AS1620: XML-RPC interface

1. Document revisions

Rev Date Name Description
ro0 28/06/2017 FG First version

Contents

1. DOCUMENT FEVISIONS ...eeeieieiiieeee ittt sttt e ettt e st e e s e e e s sare e e e s sbe e e e s sneeeeseaseeeessaneneessneneessaneeeessanen 1
167 01 (=T 01 (PP PPN 2
P 111 i o To [o1 o] o P T TP PRTOUSTOPRTOP 4
U o To] TPt 4
WAt IS RPC? ...ttt et h e sttt et e bt e s bt e she e sat e e bt e b e e bt e s beesbeesateeabe e beenbeesanenas 4
WAt iS XIMIL-RPC?....ieii ittt sttee ettt ettt e st e e s st te e e e sabae e e e s abtaeeseabeeeessabaeeesansteeessnseneessseneessnses 4
WY XIMIL-RPC ..ottt ettt sttt e bt e e s st e e s st te e e e sabteeesesbeaeessabeeeessabaeeesanseeeessnseaaessnseneessnne 4
XIMIL-RPC REFEIENCESeeitiiieieitiete ettt ettt sa e st s bttt e bt e b e s be e s ae e saee et e ebeesbeesbeesanenas 5
B AP REIBIBNCE .. ettt ettt e h e s he e st sttt e b e bt e bt naee et e e te e beesheesneeeas 5
CONVENTION ..ttt e s e et e s s et e e s s be e e e s sree e e s sreaeessnee 5
LCT=Y e AV =1 TSRS 5
LCY=Y i oY o= o =T | SR 6
Y oY X< 1T ISP STRR 6
LC1=1 (0] o)1V, [oTe 1T I Iy PR RPURRRE 6
LCY=Y (0] 11 T o 1= | RS 7
Y=Y (0111 Yo [T | RS R 7
GRESTATUS() veeeeerrrreeieirrie e ettt eette e e eetteeeeeteeeeeeteeeeeebeeeeeebseeeeebaeeeeebaaeesstsaeeesabsreesstseeeesasseeeesnsreeeesnses 7
GEEINPULES() 1eeeeenreieeieiiie e ettt ettt e e eectte e e e ettt e e e e teeeeeebeeeeeebaeeeeasbaseeeaabaaeesaassaeesanssseasassaeasasssaasanssanasane 7
GEEOULPUES() couuveeeeieiiieeeeiiee e ettt e e eette e e e ettt e e e e bee e e eebeeeeeebteeeeeabeeeesestaeesassseeesnssseasansseeesasssaasanssanasanses 8
Y=Y (0o T=T o PR 8
SEECIOSE() vvveeeenrreeeieirreeeeeiteee e eeete et eeetteeeeeetaeeeeeetaeeeeeebeeeeeebsaeeeebaaeeesbaaeeseasbaeeeeatseeeesatseeeesasseeeesasraeeesnes 8
Y = g L= =0T o TorV TSP URRE 8
LCTTd = g YT =0T o[V RSP URRE 9
LG Oo 10T Y =T Y TSP UURRt 9
SEECOUNTEI() .eeureeeeietiee ettt ettt e eette e e et e e eeetaeeeeetbeeeestbeeeeebaeeeeeabsaeeseassaeeesbaeeessetsesessssseeeesnseneeesnses 9
L - T o U 1= L o Lo [T U PURRPRE 10
Properties: position iNThe [ane...........uiiiiiii e e e e e e 10
Properties: role iN the [aN@ ... e e e e e s e e eae e e e e e eeas 10
DYl Y] o 1T 10
(0] o1 =Y o] a1 g 0o e 1TSS 10
[o) 0[] (=0t £ TSP PP PP PRUPRP 10
g o 10 o Y7 o =N 10
(O 1T} o1 UL B 4o 1= SRR 11
10T TN 1 = 3 PP PTTPTTTN 12
5 HOW-TO ciiiii e 13

2. Introduction

Purpose

This document describes the APl (Application Programming Interface) that is available on the VOPAC
board. Clients can use this APl to manage and control any barrier using on a VOPAC board. This API
offers the following features:

- Get and set operational modes;
- Get the technical defects;

- Send commands (open, close);
- Get and set the counters;

This APl is implemented as a XML-RPC APl and it can be called remotely through an HTTP connection.
Clients can be written in a wide variety of programming languages as libraries implementing the XML-
RPC protocol are available.

What is RPC?

RPC stands for Remote Procedure Call. As its name indicates it is a mechanism to call a procedure or
function available on a remote computer. Remote Procedure Call (RPC) is a much older technology
than the Web. Effectively, RPC gives developers a mechanism for defining interfaces that can be called
over a network. These interfaces can be as simple as a single function call or as complex as a large API.

What is XML-RPC?

XML-RPC is among the simplest and most fool-proof web service approaches, and makes it easy for
computers to call procedures on other computers.

XML-RPC permits programs to make function or procedure calls across a network.
XMLRPC uses the HTTP protocol to pass information from a client computer to a server computer.
XML-RPC uses a small XML vocabulary to describe the nature of requests and responses.

XML-RPC client specify a procedure name and parameters in the XML request, and the server returns
either a fault or a response in the XML response.

XML-RPC parameters are a simple list of types and content - structs and arrays are the most complex
types available.

XML-RPC has no notion of objects and no mechanism for including information that uses other XML
vocabularies.

With XML-RPC and web services, however, the Web becomes a collection of procedural connections
where computers exchange information along tightly bound paths.

XML-RPC emerged in early 1998; it was published by UserLand Software and initially implemented in
their Frontier product.

Why XML-RPC?

If you need to integrate multiple computing environments, but don't need to share complex data
structures directly, you will find that XML-RPC lets you establish communications quickly and easily.

Even if you work within a single environment, you may find that the RPC approach makes it easy to
connect programs that have different data models or processing expectations and that it can provide
easy access to reusable logic.

XML-RPC is an excellent tool for establishing a wide variety of connections between computers.

XML-RPC offers integrators an opportunity to use a standard vocabulary and approach for exchanging
information.

XML-RPC's most obvious field of application is connecting different kinds of environments, allowing
Java to talk with Perl to talk with Python to talk with ASP, and so on.

XML-RPC References

XML-RPC is a well-documented protocol. Numerous books have been published on this topic. See for
example the following book published by O’REILLY:

PROGRAMMING WEB SERVICES WITH XML-RPC
AUTHORS: S. ST. LAURENT, J. JOHNSTON & E. DUMBILL
ISBN 0-596-00119-3.

Programming of a XML-RPC client can be simplified by using libraries that implements the protocol.
XML-RPC libraries exist for a wide range of programming languages including C/C++, Java, PHP, Perl,
Python, Ruby, etc.

3. APl Reference

Convention

The available XML-RPC functions are documented according to the following convention:

Results = function name (Args)
Where:
e Args are the function arguments. Args is an array of integer or string.
e Results are the values returned by the function call. Results is an array of integer,
string, structure or array.
GetSoftware()

Description: Get the software version and revision
Arguments: NIL

Results:

‘ Results[0] ‘ (struct) structure describing the software

Where software struct is:

Struct['sVersion'] (string) Software release version (e.g. VO1R02)
Struct['iSvn'] (int) Software SVN version
Struct['iHWrev'] (int) Hardware revision
Struct['sBoard'] (string) Board name (AS1620R04)

Struct['sSN'] (string) Board serial number
Struct['sDate'] (string) Board production date (YYMMDD)

GetProperties()

Description: Get the name assigned to the device, the group that contains the device, and the position
of the device in the group. These properties are used by the monitoring panel.

Arguments: NIL

Results:

‘ Results[0] ‘ (struct) structure describing the properties
Where:

Properties struct is:

Struct['sType'] (string) type of the device, see section 4
Struct['sDeviceName'] | (string) name of the device
Struct['sGroupName'] (string) name of the group that contains the device
Struct['iPosition'] (int) position of the device in the group
Struct['iLanePos'] (int) Code with position in the lane, see section 4
Struct['iRole'] (int) Code with role in the lane, see section 4
Struct['iPartner'] (int) position of the partner device in the group (if any)

SetProperties()
Description: Set the given properties

Arguments:

Args[0] (string) name of the device

Args[1] (string) name of the group that contains the device

Args[2] (int) position of the device in the group [1,72]

Args[3] (int) Code with position in the lane, see section 4

Args[4] (int) Code with role in the lane, see section 4

Args[5] (int) position of the partner device in the group [1,72]
Results:

‘ Results[0] ‘ (int) 1 in case of success, O if it failed ‘

GetOpModelist()

Description: Get the list of all operation modes that are supported by the barrier, for instance
“automatic”, “free access”, “blocked open”, “blocked close”.

Arguments: NIL

Results:

Results[0] (int) Number of operation mode (N)
Results[1][0..N-1] | (array of struct) list of supported operating modes

Where:

Mode struct is

struct['ivalue'] (int) Mode id

struct[' sName '] (string) Language code describing the mode, see section 4

GetOpMode()
Description: Get the current operating mode.
Arguments: Nil

Results:

‘ Results[0] ‘ (int) id of the operating mode (see GetOpModelist)

SetOpMode()
Description: Set the given operating mode.

Arguments:

‘ Args[0] ‘ (int) Id of the operating mode (see GetOpModeList)

Results:

‘ Results[0] ‘ (int) 1 in case of success, O if it failed

GetStatus()
Description: Get status information.

Arguments: NIL

Results:
Results[0] (bool) Device in maintenance
Results[1] (bool) Barrier is open
Results[2] (bool) Barrier is close
Results[3] (bool) Arm is moving
Results[4] (bool) Emergency
Results[5] (int) Operation mode
Results[6] (int) Number of technical defects (Nd)
Results[7] [0..Nd-1] (array of struct) list of defects
Results[8] (int) Number of inputs (Ni)
Results[9][0..Ni-1] (array) list of inputs values
Results[10] (int) Number of outputs (No)
Results[11][0..No-1] | (array) list of outputs values

Where

Defect struct is

struct['sType ']

(string) Language code describing the defect, see section 4

struct['iIsMajor']

(int) Severity [1=major, O=minor]

Getlnputs()

Description: Get the description and value of each input

Arguments: Nil

Results:

Results[0] (int) Number of inputs (N)
Results[1][0..N-1] | (array of struct) description of each input

Where:

Input struct is

struct['ivalue'] (int) current value
struct['sType"'] (string) Language code describing the input, see section 4
GetOutputs()

Description: Get the description and value of each output
Arguments: Nil

Results:

Results[0] (int) Number of outputs (N)
Results[1][0..N-1] | (array of struct) description of each output

Where:

Output struct is

struct['ivalue'] (int) current value
struct['sType"'] (string) Language code describing the input, see section 4
struct['sAlias'] (string) Alias (if any) given by user

SetOpen()

Description: Send an opening command.
Arguments: Nil

Results:

‘ Results[0] ‘ (int) 1

SetClose()

Description: Send a closing command.
Arguments: Nil

Results:

‘ Results[0] ‘ (int) 1

SetEmergency()

Description: Enable or disable the evacuation mode. This is equivalent to temporary set the barrier in
“blocked open” mode.

Arguments:

[Args (0] | (int) O=disabled, 1=enabled |
Results:

‘ Results[0] ‘ (int) 1 ‘

GetEmergency()

Description: Get the evacuation mode current status.
Arguments: Nil

Results:

| Results[0] | (int) O=disabled, 1=enabled

GetCounters()

Description: Get the value of all the counters.
Arguments: Nil

Results:

Results[0] (int) Num of counters (Nc)
Results[1][0..Nc-1] | (array of struct) list of counters

Where:

Counter struct is

struct[' sName '] (string) Language code describing the counter, see section 4
struct['iPerp'] (int) Perpetual counter, never reset
struct['Main'] (int) Main counter, can be reset

SetCounter()

Description: Set the value of a counter. The value can be 0 (reset counter) or any positive number for
the counters that are settable.

Arguments:
Args[0] (int) id of the counter (see GetCounters() and section 4)
Args[1] (int) new value of the counter

Results:

Results[0] ‘ (int) O=error; 1=counter set to new value;

4. Language Codes

List of codes used:

Properties: position in the lane

- 0=Front Left
- 1=Back Left
- 2 =Front Right
- 3 =BackRight

Properties: role in the lane

- 0=Independent
- 1=Master
- 2=Slave

Device types

- BL15

- BL229 :Standard BL229
- BL229H : BL229 for highways
- BL40O

- BlL41

- BL43

- BL44

- BL45

- BL46

- BL47

- BL5X

- BL77

Operation modes:

- AUTO : Automatic mode
- FREE : Free access mode
- BLOP : Locked open mode
- BLCL: Locked closed mode

List of defects:

- E-00 and E-10 : Motorisation

- E-01 and E-11 : Sensor position

- E-02 and E-12 : Installation

- E-03 and E-13 : Blocked movement
- E-04 and E-14 : Temperature

- E-05and E-15 : Inputs/Outputs

- E-06 and E-16 : Snap Out

Input types:
- INOO : Disabled

- INO1: Open

- INO2:OpenB

- INO3: Close

- INO4 : Open and Close

- INOS5 : Authorization Terminal
- INO®6 : Authorization Terminal B
- INO9: Stop

- IN210: Snap Out Sensor

- IN11: Local Mode

- IN12: Lock open

- IN13: Lock closed

- IN14: Lock boom

- IN15: Inhibit

- IN16: Inhibit B side

- IN17 : Reset Capacity

- IN18: Passage

- IN19: Passage B

- IN22: Validation Loop

- IN23: Validation Loop B

- IN24: Open Loop

- IN25: Open Loop B

- IN26: Close Loop

- IN27 : Security Loop

- IN28: Limit Switch Opened
- IN29: Limit Switch Closed

- IN30: Power Fail Detection
- IN31: Dead Bolt Check

- IN32: Motor Off

- IN33: Manual Mode

- IN34: Open (Local)

- IN35: Close (Local)

- IN36: Reset Counter 1

- IN37:Increment Counter 1
- IN38: Decrement Counter 1
- IN39: Reset Counter 2

- IN40 : Increment Counter 2
- IN41: Decrement Counter 2

Output types:

- 000 : Not Used

- 001:Copy Input

- 002 : Passage Contact

- 003 : Logical Combination
- 004 : End Position

- 005 : Parking Full

- 006 : Open Command

- 007 : Close Command

- 008 : Stop Command

- 009 : Engine Brake

- 010: Electromagnetic Tip Support
- 011 : Dead Bolt

- 012: Green Lights

- 013 :Green Lights A

- 014 :Green Lights B

- 015 :Red Lights

- 016:Red Lights A

- 017 :Red Lights B

- 018 :Boom Lights

- 019 : Active Security

- 020 : Block Mantrap

- 021: Fraud Detection

- 022 :Counter 1 Threshold
- 023 :Counter 2 Threshold

- 024 :Custom
Counters:
- CNOO: Cycles

- CNO4 : Opening commands

- CNO5 : Motor emergency stops

- CNO6 : Major errors

- CNO7 : Boom snapped out

- CNOS8 : Passages

- CNO09 : Passages from opposite direction

- CN10: Vehicles in lot (settable)

- CN11 : Number of Authorizations (settable)
- CN12: Counter 1 (settable)

- CN13: Counter 2 (settable)

5. How-to

How to connect to the XML-RPC server

Physical interface: Ethernet
Protocol: XML/RPC
Port: 8081
Python

The following is written in Python 3 using the standard library xmlirp. It shows how to connect to the
VOPAC XML-PRC server and how to use the different calls that are provided:

import xmlrpc.client

def run (IPaddress,port=8081):
URI="http://{0}:{1}".format (IPaddress, port)
with xmlrpc.client.ServerProxy (URI) as proxy:
results=proxy.GetStatus ()
print (results)
if name == " main ":
IPaddress=input ("IP address: ")

run (IPaddress) run (IPaddress)

C++

The following is written in C++ using the standard library ~ XmlIRpc++
(http://xmlrpcpp.sourceforge.net/).

#include <iostream>
#include <stdlib.h>

#include "XmlRpc.h"

int main(int argc, char **argv)
{

if (argc !'= 2)

{

std::cerr << "Usage:
std::cerr << << argv[0] << " serverHost\n";
return -1;
}
const char* hostname = argv([l];
int port = 8081;
// Create a client and connect to the server at hostname:port
XmlRpc: :XmlRpcClient connection (hostname, port);

XmlRpc: :XmlRpcValue args, result;

// Send command
if (connection.execute ("GetStatus", args, result))
{
std::cout << result << std::endl;
}
connection.close() ;

return O;

http://xmlrpcpp.sourceforge.net/

