

Technisch Notiz – Leistung Kontrolle Protokoll für SolarEdge Wechselrichter

Γ	echnisch Notiz – Leistung Kontrolle Protokoll für SolarEdge Wechselrichter	1
	Revision Geschichte	2
	Überblick	2
	Unterstützt Wechselrichter	2
	Registrieren Kartierung – Leistung Kontrolle Daten	3
	Global Dynamisch Leistung Kontrolle Und StatusBlock	3
	Global Kontrolle Block – Begehen UndWiederherstellen	3
	Leistung KontrolleBlock	4
	Leistung Kontrolle Block Registrieren Karte – Referenz Tisch	10
	Erweitert Dynamisch Leistung Kontrolle Block	12
	Erweitert Leistung Kontrolle Block Registrieren Karte – Referenz Tisch	14
	Export Grenze Kontrolle Block	15
	StorEdge Kontrolle Und StatusBlock	16
	Global StorEdge Kontrolle Block	17
	Batterie Status Und Information Block	19
	Registrieren Kartierung – Netz SchutzGrenzen	22
	Global Netz Schutz Block – Begehen UndWiederherstellen	22
	Netz Schutz Reise Grenzen Block	22
	Netz Schutz Reise Grenzen Block – Registrieren Karte	23
	Anhang A – Q Aufbau	24
	Anhang B – Aufbau Beispiele	26
	Aktivieren Dynamisch Leistung Kontrolle Modus	26
	Aufbau von Die Lagerung Kontrolle für Fernbedienung KontrolleModus	26

Revision Geschichte

- Ausführung 1.3, Okt. 2017: Lagerung Wechselstrom Aufladung Politik Und Lagerung Wechselstrom Aufladung Grenze Aktualisiert
- Ausführung 1.2, Jan. 2017:
 - Hinzugefügt Export Grenze Und StorEdge Information UndAnhang
 - Export Kontrolle Block registrieren Kartierung -Aktualisiert
- Ausführung 1.1, Nov. 2014:
 - Abschnitt Zusatz: Unterstützt Versionen
 - AdvancedPwrControlEn Und ReactivePwrConfig Aktualisiert
- Ausführung 1,0, Sept. 2014 Erste freigeben

Überblick

SolarEdge Wechselrichter Unterstützung Die Lektüre von Wechselrichterebene Überwachung Daten Und konfigurieren es ist Leistung Kontrolle Einstellungen direkt über ein lokales Gerät, das nicht von SolarEdge stammt.

Direkte Verbindung Zu A Überwachung Und Kontrolle System Ist nützlich Wann A Netzwerk Verbindung Ist nicht verfügbar, Wann umfangreich eine kundenspezifische Datenverarbeitung erforderlich ist oder wenn Behörden direkten Zugriff auf Überwachungsdaten und Fernsteuerungseinstellungen benötigen.

In viele Fälle, Es Ist möglich – Und empfohlen – Zu beschäftigen A Direkte Verbindung neben A SolarEdge Überwachung Portalanbindung. Die Verbindung zum SolarEdge-Überwachungsportal ermöglicht alle Überwachungsvorteile, vor allem:

- Proaktiv Installateur Wartung Und real Zeit Fehlerbehebung von SolarEdge unterstützen, nutzen Die k\u00f6rperlich Kartierung verf\u00fcgbar nur im SolarEdge-\u00fcberwachungsportal
- Modulebene Überwachung

Das dokumentieren dient als A ergänzend dokumentieren Zu Die *Technisch Notiz – SunSpec Protokollierung In SolarEdge Wechselrichter*, Und beschreibt die Registerzuordnung der Wechselrichter-Leistungssteuerungsdaten (Lese-/Schreib-MODBUS-Protokoll).

Der Technisch Notiz – SunSpec Protokollierung In SolarEdge Wechselrichter Ist verfügbar An Die SolarEdge Webseite bei: http://www.solaredge.com/files/pdfs/sunspec-implementation-technical-note.pdf

Unterstützt Wechselrichter

Alle Wechselrichter mit CPU Ausführung 3.xxxx Und über dürfen Unterstützung DasBesonderheit.

Zu überprüfen Die Wandler Firmware Versionen, kurz Drücken Sie Die LCD Licht Taste bis erreichen Die folgende Bildschirm:

Kontakt SolarEdge Unterstützung Zu Aktualisierung Die Wechselrichter Zu Die neueste FW.

Registrieren Kartierung – Leistung KontrolleDaten

Global Dynamisch Stromschalter Und Status Block

Diese registriert Unterstützung dynamisch Leistung Kontrolle ohne zurückgreifen Und Hochlauf/Rampe Einstellungen.

Für erweitert dynamisch Leistung Kontrolle mit zurückgreifen Und Hochlauf/Rampe Einstellungen, verweisen Zu Die Erweitert Dynamisch Leistung Kontrolle Block Registerkartenabschnitt dieses Dokuments.

Der Base registrieren von Die dynamische Befehle Block Ist Satz Zu 0xF000:

- RRCR Zustand Rückmeldung Ist Die aktuell Zustand von Die vier RRCR Eingang Linien (0x0 0xF).
- Wirkleistungsgrenzedynamische Steuerung: Dieses Register steuert die Wirkleistungsgrenze des Wechselrichters dynamisch. Es wird als Prozentsatz festgelegt von Die Wechselrichter maximal Leistung. Für Beispiel: Wann Einstellung Die registrieren von SE5000 Zu 20, Es Wille Grenze Die Wandler Zu

1000W welche Ist 20 % von 5000W.

NOTIZ

Das Ist A dynamisch Befehl Das tut nicht erfordern beliebig zurücksetzen. Der Wert Ist nicht Gerettet Und Wann Die Wechselrichter startet neu, Der Befehl muss erneut eingegeben werden.

CosPhi dynamisch Kontrolle: Das registrieren Kontrollen Die CosPhi von Die Wandlerdynamisch.

NOTIZ

Das Ist A dynamisch Befehl Das tut nicht erfordern beliebig zurücksetzen. Der Wert Ist nicht Gerettet Und Wann Die Wandler Nach einem Neustart muss der Befehl erneut eingegeben werden.

Adresse	Größe	R/W	Name	Тур	WertReichweit	Einheiten
					е	
F000	1	R	RRCR Zustand	Uint16	0-15	N/A
F001	1	RW	Aktiv Leistung Grenze	Uint16	0-100	%
F002	2	RW	CosPhi	Float32	-1,0 - 1,0	N/A

Zu aktivieren Die dynamisch Leistung Kontrolle Modus, Satz Die Folgendes:

- AdvancedPwrControlEn An Adresse 0xF142 101763 101763 Zu 1 (aktivieren). Es Ist deaktiviert (0) von Standard.
- ReactivePwrConfig An Adresse 0xF104 101701 Zu 4 (RRCR Modus). Es Ist Satz von Standard Zu 0 (Fest CosPhiModus).
- Ausgabe A Begehen Leistung Kontrolle Einstellungen Befehl An Adresse 0xF100 101697 In Befehl Zu machen Das EinstellungWirksam.

Global Kontrolle Block - Begehen UndWiederherstellen

Der Base registrieren von Die Global Kontrolle Block Ist Satz Zu 0xF100 101697 Und beinhaltet zwei global Kontrolle registriert:

- Begehen Leistung Kontrolle Einstellungen: Das registrieren führt Die tatsächlich Schreiben von Die Leistung Kontrolle registrieren Karte (Adressen 0xF102 und weiter). Das bedeutet, dass alle relevanten Leistungssteuerungseinstellungen aktualisiert werden müssen, bevor dieser Befehl ausgeführt wird.
 - Schreiben Wert: 1 Ausführenbegehen.
 - Befehl Ausführung Zeit: 5-10Sekunden.
 - Lesen Werte:
 - o 0 Begehen hingerichtet erfolgreich
 - 0x1-0x4 InternFehler
 - 0xF102+ Schlecht Wert von registrieren bei Adresse X (Wo X = FehlerCode)
 - 0xFFFF Unbekannt Fehler

- Wiederherstellen Leistung Kontrolle Standard Einstellungen: Das registrieren stellt wieder her Die Leistung Kontrolle Einstellungen Zu Die Standardwerte der Ländereinstellungen. Dieses Register ändert die Kreiseinstellung nicht.
 - Schreiben Wert: 1 Ausführen wiederherstellen Standardwerte.
 - Befehl Ausführung Zeit: 3-6Sekunden.
 - o Lesen Werte:0 Wiederherstellen Standardwerte hingerichtet erfolgreich
 - 0xFFFF Fehler

Adresse	Grö ße	R/W	Name	Тур	Reichweit e	Einheiten
F100 101697	1	R/W	Begehen Leistung Kontrolle Einstellungen	Int16	N/A	N/A
F101 101698	1	R/W	Wiederherstellen Leistung Kontrolle Standard Einstellungen	Int16	N/A	N/A

Leistung KontrolleBlock

Das Block ermöglicht Die Netz Kontrolle Funktionalität. Der Leistung Kontrolle Einstellungen Sind operativ nur Wenn Die Netz Kontrolle Funktionalität aktiviert. Das AdvancedPwrControlEn an der Adresse 0xF142 101763 101763 ist standardmäßig deaktiviert (=0) und sollte aktiviert werden.

Schreiben Wert: 1 – Aktivieren Netz Kontrolle Funktionalität

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F142 101763	R/W	AdvancedPwrControlEn	Int32	0-1	N/A

- Konfigurationsoptionen für die Blindleistung: Die Einstellung "Blindleistung" wird verwendet, um einen der verschiedenen Modi zur Blindleistungsregelung auszuwählen aufgeführt unten, Und Zu konfigurieren Die verschieden Modi. Der Reaktiv Leistung Werte dürfen Sei geändert innerhalb Die Bereiche in den Tabellen für jeden Modus angegeben:
 - **CosPhi** Sätze A Konstante CosPhi, egal von andere Parameter. CosPhi dürfen Sei Satz Zu beliebig Wert zwischen (-1) und (+1) (ein negativer Wert zeigt einen nacheilenden CosPhi an).

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F10A	R/W	FixedCosPhiPhase	Float32	-1,0 - 1,0	N/A

CosPhi(P) – Sätze A Graph von CosPhi Zu aktiv Leistung (P). CosPhi (P) hat A 6 Punkte Graph aufstellen. P dürfen kann auf einen beliebigen Wert zwischen 0 und 100 [% der Nennwirkleistung] und CosPhi auf einen beliebigen Wert zwischen (-1) und (+1) eingestellt werden (ein negativer Wert zeigt einen nacheilenden CosPhi an). Jeder Punkt umfasst die Felder:
 < % von nominal aktiv Leistung, CosPhi>.

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F10E	R/W	ReactCosPhiVsPX[0]	Float32	0-100	P/Pmax %
F110	R/W	ReactCosPhiVsPX[1]	Float32	0-100	P/Pmax %
F112	R/W	ReactCosPhiVsPX[2]	Float32	0-100	P/Pmax %
F114	R/W	ReactCosPhiVsPX[3]	Float32	0-100	P/Pmax %
F116	R/W	ReactCosPhiVsPX[4]	Float32	0-100	P/Pmax %
F118	R/W	ReactCosPhiVsPX[5]	Float32	0-100	P/Pmax %
F11A	R/W	ReactCosPhiVsPY[0]	Float32	-1,0 - 1,0	N/A
F11C	R/W	ReactCosPhiVsPY[1]	Float32	-1,0 - 1,0	N/A
F11E	R/W	ReactCosPhiVsPY[2]	Float32	-1,0 - 1,0	N/A
F120	R/W	ReactCosPhiVsPY[3]	Float32	-1,0 - 1,0	N/A
F122	R/W	ReactCosPhiVsPY[4]	Float32	-1,0 - 1,0	N/A
F124	R/W	ReactCosPhiVsPY[5]	Float32	-1,0 - 1,0	N/A

Stromspannung (deaktiviert standardmäßig - wobei min. =2 und max. = 0):

- Wenn Die Netz Stromspannung Ist zwischen [Max Stromspannung sperren In] Und [Max Stromspannung sperren Aus], Dann interpolieren der CosPhi(P) gemäß der Grafik.
- Wenn Die Netz Stromspannung Ist zwischen [Mindest Stromspannung sperren In] Und [Mindest Stromspannung sperren Aus], Dann interpolieren das CosPhi(P) laut der Grafik.

Adresse	R/W	Name	Тур	Reichweit e	Einheiten
F17A	R/W	ReactCosPhiVsPVgLockInMax	Float32	0-2	V/Vnom
F17C	R/W	ReactCosPhiVsPVgLockInMin	Float32	0-2	V/Vnom
F17E	R/W	ReactCosPhiVsPVgLockOutMax	Float32	0-2	V/Vnom
F180	R/W	ReactCosPhiVsPVgLockOutMin	Float32	0-2	V/Vnom

 Q – Sets Die Konstante reaktiv Leistung (Q). Q dürfen Sei Satz Zu beliebig Wert zwischen 0 Und max WandlerLeistung.

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F10C	R/W	FixedReactPwr	Float32	0-	VAR
				MaxLeistun	
				g	

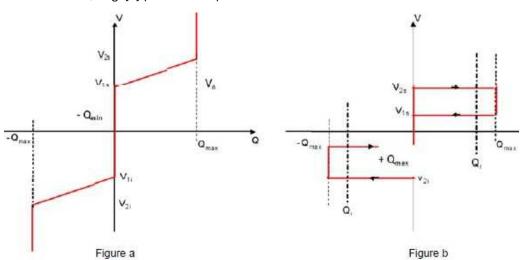
Q(U)- erstellt ein Diagramm der Blindleistung (Q) zur Netzspannung (U); Dieser Modus kann bei der Q(U)-Steuerung verwendet werden Ist erforderlich; Q(U) hat 6 Punkte Graph Setups. Verweisen Zu Anhang A – Q Aufbau, An Seite 24. Ukann auf einen beliebigen Wert zwischen 0 und 200 [% der Nennspannung] eingestellt werden.

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F126	R/W	ReactQVsVgX[0]	Float32	0-200	V/Vnom %
F128	R/W	ReactQVsVgX[1]	Float32	0-200	V/Vnom %
F12A	R/W	ReactQVsVgX[2]	Float32	0-200	V/Vnom %
F12C	R/W	ReactQVsVgX[3]	Float32	0-200	V/Vnom %
F12E	R/W	ReactQVsVgX[4]	Float32	0-200	V/Vnom %
F130	R/W	ReactQVsVgX[5]	Float32	0-200	V/Vnom %
F132	R/W	ReactQVsVgY[0]	Float32	-100 - 100	Q/Pmax %
F134	R/W	ReactQVsVgY[1]	Float32	-100 - 100	Q/Pmax %
F136	R/W	ReactQVsVgY[2]	Float32	-100 - 100	Q/Pmax %
F138	R/W	ReactQVsVgY[3]	Float32	-100 - 100	Q/Pmax %
F13A	R/W	ReactQVsVgY[4]	Float32	-100 - 100	Q/Pmax %
F13C	R/W	ReactQVsVgY[5]	Float32	-100 - 100	Q/Pmax %

Du dürfen Satz Die aktiv Graph Werte mit respektieren Zu Die aktiv Leistung gespritzt Zu Die Netz (deaktiviert von Standard- Wo min.=2 und max. = 0):

- Wenn Die tatsächlich produziert Leistung Ist zwischen [Max P sperren In] Und [Max P sperren Aus], Dann interpolieren Die neu Q gemäß der Grafik.
- Wenn Die tatsächlich produziert Leistung Ist zwischen [Mindest P sperren In] Und [Mindest P sperren Aus], Dann interpolieren Die neu Q gemäß der Grafik.

Adresse	R/W	Name	Тур	Reichweit e	Einheiten
F182	R/W	ReactQVsVgPLockInMax	Float32	0-1	P/Pmax
F184	R/W	ReactQVsVgPLockInMin	Float32	0-1	P/Pmax
F186	R/W	ReactQVsVgPLockOutMax	Float32	0-1	P/Pmax
F188	R/W	ReactQVsVgPLockOutMin	Float32	0-1	P/Pmax



Dort Sind zwei Typen von Graph Aufbau:

 $\underline{\text{Typ 0}}$ – Normal Q vs. V Netz Typ. Das Ist Die Standard Graph Typ (Figur A unten) Wo Q = Q(U) +

Q(P). Typ 1 - Q vs. V-Gittertyp mit Hysterese (Abbildung bunten). In diesem Fall:

- Wenn Die tatsächlich Netz Stromspannung > aus ReactQVsVgX[5] (Adresse F130), Dann Q= ReactQVsVgY[5] (Adresse F13C)
- Zurücksetzen Zu ReactQVsVgY[4] (Adresse F13A) Wenn Die tatsächlich Netz Stromspannung < aus ReactQVsVgX[4] (AdresseF12E)
- Wenn Die tatsächlich Netz Stromspannung < aus ReactQVsVgX[0] (Adresse F126), Dann Q= ReactQVsVgY[0] (AdresseF132)
- Zurücksetzen Zu ReactQVsVgY[1] (Adresse F134) Wenn Die tatsächlich Netz Stromspannung < aus ReactQVsVgX[1] (AdresseF128)

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F18A	R/W	ReactQVsVgType	Uint32	0,1	N/A

Q(P)— legt ein Diagramm der Blindleistung (Q) zur Netzwirkleistung (P) fest; Dieser Modus kann bei der Q(P)-Steuerung verwendet werden Ist erforderlich; Q(P) hat 6 Punkte Graph Setups. Verweisen Zu Anhang A – Q Aufbau An Seite 24zum Beispiel. P kann auf einen beliebigen Wert zwischen 0 und 100 [% der Nennwirkleistung] eingestellt werden.

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F15E	R/W	ReactQVsPX[0]	Float32	0-100	P/Pmax %
F160	R/W	ReactQVsPX[1]	Float32	0-100	P/Pmax %
F162	R/W	ReactQVsPX[2]	Float32	0-100	P/Pmax %
F164	R/W	ReactQVsPX[3]	Float32	0-100	P/Pmax %
F166	R/W	ReactQVsPX[4]	Float32	0-100	P/Pmax %
F168	R/W	ReactQVsPX[5]	Float32	0-100	P/Pmax %
F16A	R/W	ReactQVsPY[0]	Float32	0-100	Q/Pmax %
F16C	R/W	ReactQVsPY[1]	Float32	0-100	Q/Pmax %
F16E	R/W	ReactQVsPY[2]	Float32	0-100	Q/Pmax %
F170	R/W	ReactQVsPY[3]	Float32	0-100	Q/Pmax %
F172	R/W	ReactQVsPY[4]	Float32	0-100	Q/Pmax %

F174 R/W ReactQVsPY[5]	Float32	0-100	Q/Pmax %
------------------------	---------	-------	----------

• *Unom* - A Referenz Netz Stromspannung, Wann erforderlich für Installation testen. Unom dürfen Sei Satz Zu beliebig Wert zwischen 0 und 500 [V].

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F14E	R/W	Vnom	Float32	0-500	V

Zu wählen A Reaktiv Leistung Kontrolle Modus Und es ist AntwortZeit:

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F104 101701	R/W	ReactivePwrConfig	Int32	0-4	N/A
F106	R/W	ReactPwrIterTime	Uint32	10 - 600000	MS

- SchreibenWerte:
 - 0 Fest CosPhiModus
 - 1 -Fest Q Modus (Fest VAR)
 - o 2 CosPhi(P) Modus
 - \circ 3 Q(U) + Q(P) Modus
 - 4 RRCRModus
- Reaktiv Leistung Antwort Zeit Ist gebraucht für Einstellung Die Antwort Zeit von Die reaktiv Leistung Grafiken.
- Aktiv Leistung Aufbau Optionen: Der aktiv Leistung Aufbau Ist gebraucht Zu Kontrolle Die Wechselrichter aktiv Leistung. Der Wirkleistungswerte können in folgenden Bereichen geändert werden:
 - Leistung Grenze Grenzen Die Wechselrichter maximal Ausgabe Leistung. Der Leistung Grenze dürfen Sei Satz Zu beliebig Wert zwischen 0-100 [% der Nennwirkleistung].

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F140 101761	R/W	PowerReduce	Float32	0-100	%

A.

• Strombegrenzung – begrenzt den maximalen Ausgangsstrom des Wechselrichters. Die Strombegrenzung kann auf einen beliebigen Wert zwischen 0 und Inverter eingestellt werden max Wechselstrom aktuell [A] (Die LCD Wille erlauben Einstellung Zu A höher Wert Aber Die Wandler Wille niemals überschreiten es ist maximal Wechselstromaktuell).

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F18E	R/W	Maximale Spannung	Float32	0-256	A

 Aufwachen Gradient – ermöglicht Und Sätze Die Zeit für allmählich Leistung Produktion Wann Es beginnt Betrieb nach A Fehler oder einen Wechselrichter-Reset.

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F108	R/W	ActivePwrGradEn	Int32	0,1	N/A
F18C	R/W	PwrSoftStartTime	Uint32	0-3600000	MS

P(U) – Sätze A Graph von aktiv Leistung (P) Zu Netz Stromspannung (U). P(U) hat A 6 Punkte Graph aufstellen. P dürfen Sei einstellen beliebig Wert zwischen 0 Und 100% [normalisiert aktiv Leistung (P/Pmax) In Prozentsatz] Und U dürfen Sei kann auf einen beliebigen Wert zwischen 0 und 200 % eingestellt werden [normalisierte Netzspannung (V/Vnom) in Prozent]. Jeder Punkt enthält die Felder <X,Y>:

< normalisiert Netz Stromspannung, normalisiert aktiv Leistung >.

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F190	R/W	PwrVsVgX[0]	Float32	0-200	V/Vnom %
F192	R/W	PwrVsVgX[1]	Float32	0-200	V/Vnom %
F194	R/W	PwrVsVgX[2]	Float32	0-200	V/Vnom %
F196	R/W	PwrVsVgX[3]	Float32	0-200	V/Vnom %
F198	R/W	PwrVsVgX[4]	Float32	0-200	V/Vnom %
F19A	R/W	PwrVsVgX[5]	Float32	0-200	V/Vnom %
F19C	R/W	PwrVsVgY[0]	Float32	0-100	P/Pmax %
F19E	R/W	PwrVsVgY[1]	Float32	0-100	P/Pmax %
F1A0	R/W	PwrVsVgY[2]	Float32	0-100	P/Pmax %
F1A2	R/W	PwrVsVgY[3]	Float32	0-100	P/Pmax %
F1A4	R/W	PwrVsVgY[4]	Float32	0-100	P/Pmax %
F1A6	R/W	PwrVsVgY[5]	Float32	0-100	P/Pmax %

• Trennen bei null Leistung Produktion Möglichkeit - Sätze Die Wechselstrom Ausgabe Relais Zustand Wann Die Wandler Leistung Produktion Ist begrenzt auf null. Der Wandler kann nicht halten Die Ausgabe Relais geschlossen ohne Minimum Leistung Produktion (~30 Zu 60W für einzel Phasenwechselrichter und ~120 bis 160 W für 3-Phasen-Wechselrichter).

B.

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F190	R/W	PwrVsVgX[0]	Float32	0-2	V/Vnom

- SchreibenWerte:
 - o 0 Relais Sind geschlossen sogar bei null Produktion (Wandler liefert klein Menge vonLeistung)
 - 1 Relais Sind geöffnet (Standard)
- Aufwachen Aufbau Optionen: Der aufwachen Aufbau Ist gebraucht Zu Satz Die Minimum Und maximal Netz Frequenzen Und Netzspannungen zwischen welche Die Wandler dürfen beginnen Leistung Produktion. Es tut nicht Satz Die Wandler Trennung Werte, welche sind pro Land voreingestellt. Die Wakeup-Werte können in den folgenden Bereichen geändert werden:
 - Der Frequenz dürfen Sei Satz Zu beliebig Wert zwischen 0-100 [Hz].
 - Der Stromspannung dürfen Sei Satz Zu beliebig Wert zwischen 0-500 [V].

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F146	R/W	MaxWakeupFreq	Float32	0-100	Hz
F148	R/W	MinWakeupFreq	Float32	0-100	Hz
F14A	R/W	MaxWakeupVg	Float32	0-500	V
F14C	R/W	MinWakeupVg	Float32	0-500	V

• **P(f)-Konfigurationsoptionen**: Die Einstellung P(f) wird verwendet, wenn eine frequenzbasierte Leistungsreduzierung erforderlich ist. Diese Einstellung definiert eine lineare Graph Satz von zwei Punkte. Der Wandler entlastet Die Leistung nach Zu Die definiert Graph, bis Die Frequenz erreicht der Auslösewert und der Wechselrichter schaltet ab (der Auslösepunkt muss nicht als einer der beiden Punkte definiert werden, er wird per voreingestellt).

Land).

Jede Punkt beinhaltet Die folgende Felder: < Frequenz, % von nominal aktiv Leistung >. Der P(f) Werte dürfen Sei geändert In folgende Bereiche:

- Der Frequenz dürfen Sei Satz Zu beliebig Wert zwischen 0 Und 100 [Hz].
- P dürfen Sei Satz Zu beliebig Wert zwischen 0-100 [% von nominal aktiv Leistung].

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F152	R/W	PwrVsFreqX[0]	Float32	0-100	Hz

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F154	R/W	PwrVsFreqX[1]	Float32	0-100	Hz
F156	R/W	PwrVsFreqY[0]	Float32	0-100	%
F158	RW	PwrVsFreqY[1]	Float32	0-100	%

Der folgende Ist A Mechanismus Zu definieren A Graph entweder mit oder ohne Hysterese.

Zu wählen A Leistung Frequenz Derating Kontrolle Modus:

Adresse	R/W	Name	Тур	Reichweite	Einheiten
F102101699	R/W	PwrFrqDeratingConfig	Int32	0-4	N/A

- Schreiben Werte f
 ür Leistung Frequenz Derating Kontrolle Modus:
 - o 0 –aus
 - 1 –Reserviert
 - 2 –Reserviert
 - 3 Leistung Frequenz Derating mitHysterese

Wenn Die tatsächlich Frequenz ≥ Max Freq Einstellung [Hz] (Adresse F15B unten) Dann Die tatsächlich Leistung Ist begrenzt Zu O.

Hysterese aktiviert: Wenn die tatsächliche Frequenz ≤ Reset Freq-Einstellung [Hz] (Adresse F15A unten) für mehr als den definierten Wert ist ResetTime (Adresse F176 unten) gehen zurück Zu maximal Leistung innerhalb GradTime (Adresse F178 unten).

Es Ist **nicht erlaubt** Zu gehen zurück In Die Graph ohne Vorbeigehen entweder Die max Frequenz oder zurücksetzen Frequenz Einstellungen.

4 – Leistung Frequenz Derating ohne Hysterese

Wenn Die tatsächlich Frequenz ≥ Max Freq Einstellung [Hz] (Adresse F15B unten) Dann Die tatsächlich Leistung Ist begrenzt Zu O.

Hysterese deaktiviert: Wenn Die tatsächlich Frequenz ≤ Zurücksetzen Freq Einstellung [Hz] (Adresse F15A unten) für mehr als die definierte ResetTime (Adresse F176 unten) Gehen Sie innerhalb von SoftReurnTime (Adresse F178) auf die maximale Leistung zurückunten).

Es Ist **erlaubt** Zu gehen zurück In Die Graph ohne Vorbeigehen entweder Die max Frequenz oder zurücksetzen Frequenz Einstellungen. Parametereinstellungen für die Leistungsfrequenz-Derating-Steuerungsmodi:

Adresse	R/W	Name	Тур	Reichweite	Einheit
					en
F15A	R/W	ResetFreq	Float32	0-100	Hz
F15C	R/W	MaxFreq	Float32	0-100	Hz
F176	R/W	PwrFrqDeratingResetTime	Uint32	0-MAX_UINT32	MS
F178	R/W	PwrFrqDeratingGradTime	Uint32	0-MAX_UINT33	MS

• Fortschrittlich Aufbau Optionen: Der Fortschrittlich Aufbau Ist gebraucht Zu konfigurieren Die K-Faktor für Deutschland MVGC. Es Ist Satz Zu eine Vorgabe Wert von 2. Der FrtEn Feld sollte Sei ermöglicht (Satz Zu 1) um zu aktivieren Sie Die FRT-K-Mechanismus. Der FRT-K-Wert kann sein geändert In Die folgendeBereiche:

• Der K-Faktor dürfen Sei geändert Zu beliebig Wert zwischen 0 Und 16.

Adresse	R/W	Name	Тур	Reichweite	Einheite n
F144	R/W	FrtEn	Int32	0, 1	N/A
F13E	R/W	FRT_KFactor	Float32	0-16	N/A

Leistung Kontrolle Block Registrieren Karte - ReferenzTisch

Der folgende Tisch fasst zusammen alle Die registriert erwähnt In Die vorherigeAbschnitte.

Adresse	Größe	R/W	Name	Тур	Reichweite	Einheiten
F102 101699	2	R/W	PwrFrqDeratingConfig	Int32	0-4	N/A
F104 101701	2	R/W	ReactivePwrConfig	Int32	0-4	N/A
F106	2	R/W	ReactPwrIterTime	Uint32	0-MAX_UINT32	MS
F108	2	R/W	ActivePwrGrad	Int32	0,1	N/A
F10A	2	R/W	FixedCosPhiPhase	Float32	-1,0 - 1,0	N/A
F10C	2	R/W	FixedReactPwr	Float32	0-MAX_FLOAT	VAR
F10E	2	R/W	ReactCosPhiVsPX[0]	Float32	0-100	P/Pmax %
F110	2	R/W	ReactCosPhiVsPX[1]	Float32	0-100	P/Pmax %
F112	2	R/W	ReactCosPhiVsPX[2]	Float32	0-100	P/Pmax %
F114	2	R/W	ReactCosPhiVsPX[3]	Float32	0-100	P/Pmax %
F116	2	R/W	ReactCosPhiVsPX[4]	Float32	0-100	P/Pmax %
F118	2	R/W	ReactCosPhiVsPX[5]	Float32	0-100	P/Pmax %
F11A	2	R/W	ReactCosPhiVsPY[0]	Float32	-1,0 - 1,0	N/A
F11C	2	R/W	ReactCosPhiVsPY[1]	Float32	-1,0 - 1,0	N/A
F11E	2	R/W	ReactCosPhiVsPY[2]	Float32	-1,0 - 1,0	N/A
F120	2	R/W	ReactCosPhiVsPY[3]	Float32	-1,0 - 1,0	N/A
F122	2	R/W	ReactCosPhiVsPY[4]	Float32	-1,0 - 1,0	N/A
F124	2	R/W	ReactCosPhiVsPY[5]	Float32	-1,0 - 1,0	N/A
F126	2	R/W	ReactQVsVgX[0]	Float32	0-200	V/Vnom %
F128	2	R/W	ReactQVsVgX[1]	Float32	0-200	V/Vnom %
F12A	2	R/W	ReactQVsVgX[2]	Float32	0-200	V/Vnom %
F12C	2	R/W	ReactQVsVgX[3]	Float32	0-200	V/Vnom %
F12E	2	R/W	ReactQVsVgX[4]	Float32	0-200	V/Vnom %
F130	2	R/W	ReactQVsVgX[5]	Float32	0-200	V/Vnom %
F132	2	R/W	ReactQVsVgY[0]	Float32	-100 - 100	Q/Pmax %
F134	2	R/W	ReactQVsVgY[1]	Float32	-100 - 100	Q/Pmax %
F136	2	R/W	ReactQVsVgY[2]	Float32	-100 - 100	Q/Pmax %
F138	2	R/W	ReactQVsVgY[3]	Float32	-100 - 100	Q/Pmax %
F13A	2	R/W	ReactQVsVgY[4]	Float32	-100 - 100	Q/Pmax %
F13C	2	R/W	ReactQVsVgY[5]	Float32	-100 - 100	Q/Pmax %
F13E	2	R/W	FRT_KFactor	Float32	0-16	N/A
F140 101761	2	R/W	PowerReduce	Float32	0-100	%
F142 101763	2	R/W	AdvancedPwrControlEn	Int32	0-1	N/A
F144	2	R/W	FrtEn	Int32	0-1	N/A
F146	2	R/W	MaxWakeupFreq	Float32	0-100	Hz
F148	2	R/W	MinWakeupFreq	Float32	0-100	Hz
F14A	2	R/W	MaxWakeupVg	Float32	0-500	V
F14C	2	R/W	MinWakeupVg	Float32	0-500	V
F14E	2	R/W	Vnom	Float32	0-500	V
F150	2	R	Inom	Float32	0-100	Α
F152	2	R/W	PwrVsFreqX[0]	Float32	0-100	Hz

Adresse	Größe	R/W	Name	Тур	Reichweite	Einheiten
F154	2	R/W	PwrVsFreqX[1]	Float32	0-100	Hz
F156	2	R/W	PwrVsFreqY[0]	Float32	0-100	%
F158	2	R/W	PwrVsFreqY[1]	Float32	0-100	%
F15A	2	R/W	ResetFreq	Float32	0-100	Hz
F15C	2	R/W	MaxFreq	Float32	0-100	Hz
F15E	2	R/W	ReactQVsPX[0]	Float32	0-100	P/Pmax %
F160	2	R/W	ReactQVsPX[1]	Float32	0-100	P/Pmax %
F162	2	R/W	ReactQVsPX[2]	Float32	0-100	P/Pmax %
F164	2	R/W	ReactQVsPX[3]	Float32	0-100	P/Pmax %
F166	2	R/W	ReactQVsPX[4]	Float32	0-100	P/Pmax %
F168	2	R/W	ReactQVsPX[5]	Float32	0-100	P/Pmax %
F16A	2	R/W	ReactQVsPY[0]	Float32	0-100	Q/Pmax %
F16C	2	R/W	ReactQVsPY[1]	Float32	0-100	Q/Pmax %
F16E	2	R/W	ReactQVsPY[2]	Float32	0-100	Q/Pmax %
F170	2	R/W	ReactQVsPY[3]	Float32	0-100	Q/Pmax %
F172	2	R/W	ReactQVsPY[4]	Float32	0-100	Q/Pmax %
F174	2	R/W	ReactQVsPY[5]	Float32	0-100	Q/Pmax %
F176	2	R/W	PwrFrqDeratingResetTime	Uint32	0-MAX_UINT32	MS
F178	2	R/W	PwrFrqDeratingGradTime	Uint32	0-MAX_UINT32	MS
F17A	2	R/W	ReactCosPhiVsPVgLockInMax	Float32	0-2	V/Vnom
F17C	2	R/W	ReactCosPhiVsPVgLockInMin	Float32	0-2	V/Vnom
F17E	2	R/W	ReactCosPhiVsPVgLockOutMax	Float32	0-2	V/Vnom
F180	2	R/W	ReactCosPhiVsPVgLockOutMin	Float32	0-2	V/Vnom
F182	2	R/W	ReactQVsVgPLockInMax	Float32	0-2	P/Pmax
F184	2	R/W	ReactQVsVgPLockInMin	Float32	0-2	P/Pmax
F186	2	R/W	ReactQVsVgPLockOutMax	Float32	0-2	P/Pmax
F188	2	R/W	ReactQVsVgPLockOutMin	Float32	0-2	P/Pmax
F18A	2	R/W	ReactQVsVgType	Uint32	0-1	N/A
F18C	2	R/W	PwrSoftStartTime	Uint32	0-MAX_UINT32	MS
F18E	2	R/W	Maximale Spannung	Float32	0-256	A
F190	2	R/W	PwrVsVgX[0]	Float32	0-2	V/Vnom
F192	2	R/W	PwrVsVgX[1]	Float32	0-2	V/Vnom
F194	2	R/W	PwrVsVgX[2]	Float32	0-2	V/Vnom
F196	2	R/W	PwrVsVgX[3]	Float32	0-2	V/Vnom
F198	2	R/W	PwrVsVgX[4]	Float32	0-2	V/Vnom
F19A	2	R/W	PwrVsVgX[5]	Float32	0-2	V/Vnom
F19C	2	R/W	PwrVsVgY[0]	Float32	0-1	P/Pmax
F19E	2	R/W	PwrVsVgY[1]	Float32	0-1	P/Pmax
F1A0	2	R/W	PwrVsVgY[2]	Float32	0-1	P/Pmax
F1A2	2	R/W	PwrVsVgY[3]	Float32	0-1	P/Pmax
F1A4	2	R/W	PwrVsVgY[4]	Float32	0-1	P/Pmax
F1A6	2	R/W	PwrVsVgY[5]	Float32	0-1	P/Pmax
F1A8	2	R/W	DisconnectAtZeroPwrLim	Float32	0-1	N/A

Erweitert Dynamisch StromschalterBlock

Diese registriert Unterstützung Die Erweitert Dynamisch Leistung Kontrolle mit zurückgreifen Und

Hochlauf/Rampe Einstellungen. Das Basisregister des Dynamic-Commands-Blocks ist auf 0xF300 102209 gesetzt:

- Aktivieren Dynamisch Leistung Kontrolle An Adresse 0xF300 102209 Ist deaktiviert (=0) von Standard Und sollen Sei ermöglicht (1) für dynamischLeistung
 Kontrolle Funktionalität
- Max Aktiv Leistung Ist Die Wandler bewertet aktiv Leistung. Das Ist A lesen nur registrieren.
- Max Reaktiv Leistung Ist Die Wandler bewertet reaktiv Leistung. Das Ist A lesen nurregistrieren.
- Alle andere Einstellungen beschrieben für Die erweitert dynamisch Leistung Kontrolle Block Sind verwandt Zu diese Bewertungen.

Adresse	Größe	R/W	Name	Тур	WertReichweite	Einheiten
F300 102209	1	R/W	Aktivieren Dynamisch Leistung Kontrolle	Uint16	0-1	N/A
F304	2	R	Max AktivLeistung	Float32	Wandler Bewertung	W
F306	2	R	Max Reaktiv Leistung	Float32	Wandler Bewertung	VAR

Zu aktivieren Die erweitert dynamisch Leistung Kontrolle Modus, Satz DieFolgendes:

- AdvancedPwrControlEn An Adresse 0xF142 101763 101763 Zu 1 (aktivieren). Es Ist deaktiviert (0) von Standard.
- ReactivePwrConfig An Adresse 0xF104 101701 Zu 4 (RRCR Modus). Es Ist Satz von Standard Zu 0 (Fest CosPhiModus).
- Ausgabe A Begehen Leistung Kontrolle Einstellungen Befehl An Adresse 0xF100 101697 In Befehl Zu machen Das EinstellungWirksam.
- Initialisieren erweitert Leistung Kontrolle Einstellungen An Adresse 0xF308 Und weiter.
- **Aktivieren Dynamisch Leistung Kontrolle**Es Ist deaktiviert (0) von Standard. Es sollen Sei ermöglicht nur nach die Initialisierung des erweiterten Leistungssteuerungsvorgangs.

Zu initialisieren Die Erweitert Leistung KontrolleBetrieb:

- Aktiv/Reaktiv Präferenz Sätze Die Priorität zwischen aktiv Und reaktiv Leistung.
 - Wann Satz Zu (1) Die aktiv Leistung hat h\u00f6her Priorit\u00e4t An reaktiv Leistung. Das bedeutet Das Die Der Wechselrichter versucht zuerst die Wirkleistungsgrenze zu erreichen und dann die Blindleistungsgrenzen einzuhalten.
 - Wann Satz Zu (0) Die reaktiv Leistung hat höher Priorität An reaktiv Leistung.
- CosPhi/Q Präferenz Sätze Wenn Die reaktiv Leistung Ist kontrolliert von CosPhi oder von Q. Wann Satz Zu (0) Die reaktiv Leistung Ist gesteuert durch CosPhi.
- Aktiv Leistung Grenze Sätze Die Grenzen für Die dynamisch aktiv LeistungKontrolle.
- Reaktiv Leistung Grenze Sätze Die Grenzen für Die dynamisch reaktiv LeistungKontrolle.
- **Befehl Auszeit:** Das registrieren Satz Die Auszeit Timer für dynamisch Befehle. Wenn Die Wandler nicht erhalten eins von Die Wenn innerhalb dieses Zeitraums dynamische Befehle ausgeführt werden, werden die unten beschriebenen Fallback-Einstellungen wiederhergestellt.
- Zurückgreifen Aktiv Leistung Grenze Sätze Die zurückgreifen Grenze für Die dynamisch aktiv Leistung Kontrolle.
- Zurückgreifen Reaktiv Leistung Grenze Sätze Die zurückgreifen Grenze für Die dynamisch reaktiv Leistung Kontrolle.
- Zurückgreifen CosPhi Sätze Die zurückgreifen Grenze für Die dynamisch CosPhi Kontrolle.
- Aktiv Leistung Aufstocken Rate Kontrollen Die aufstocken Rate von Die dynamisch aktiv Leistung ändern. Es Ist Satz als Die Prozentsatz pro Minute der Wirkleistungsbegrenzungsregistereinstellung des Wechselrichters (auf Adresse F30C).
- Aktiv Leistung Runterfahren Rate Kontrollen Die runterfahren Rate von Die dynamisch aktiv Leistung ändern. Es Ist Satz als Die Prozentsatz pro Minute der Wirkleistungsbegrenzungsregistereinstellung des Wechselrichters (auf Adresse F30C).
- Reaktiv Leistung Aufstocken Rate Kontrollen Die aufstocken Rate von Die dynamisch reaktiv Leistung ändern. Es Ist Satz als Die Prozentsatz pro Minute der Blindleistungsbegrenzungsregistereinstellung des Wechselrichters (auf Adresse F30E).
- Reaktiv Leistung Runterfahren Rate Kontrollen Die runterfahren Rate von Die dynamisch reaktiv Leistung ändern. Es Ist Satz als der Prozentsatz pro Minute der Blindleistungsbegrenzungsregistereinstellung des Wechselrichters (auf Adresse F30E).

٠	Phi Ändern Rate Kontrollen Die ändern Rate von Die dynamisch Winkel ändern. Es Ist Satz In Bogenmaß pro Minute.	

Adresse	Größe	R/W	Name	Тур	WertReichweite	Einheiten
F308	1	R/W	Aktiv/Reaktiv Präferenz	Uint16	0-1	0-1
F309	1	R/W	CosPhi/Q Präferenz	Uint16	0-1	0-1
F30C	2	R/W	Aktiv Leistung Grenze	Float32	0- Max Aktiv Leistung	W
F30E	2	R/W	Reaktiv Leistung Grenze	Float32	0- Max Reaktiv Leistung	VAR
F310	2	R/W	Befehl Auszeit	Uint32	0-MAX_UINT32	Sek
F312	2	R/W	Zurückgreifen Aktiv Leistung Grenze	Float32	0-100	%
F314	2	R/W	Zurückgreifen Reaktiv Leistung Grenze	Float32	0-100	%
F316	2	R/W	Zurückgreifen CosPhi	Float32	-1 Zu 1	N/A
F318	2	R/W	Aktiv Leistung Aufstocken Rate	Float32	0-100	%/ Mindest
F31A	2	R/W	Aktiv Leistung Runterfahren Rate	Float32	0-100	%/ Mindest
F31C	2	R/W	Reaktiv Leistung AufstockenRate	Float32	0-100	%/ Mindest
F31E	2	RW	Reaktiv Leistung Runterfahren Rate	Float32	0-100	%/ Mindest
F320	2	R/W	Phi Ändern Rate	Float32	0 -Pi	rad/min

Erweitert Leistung Kontrolle Dynamisch BefehleBetrieb:

Dynamisch Aktiv Leistung Grenze: Das registrieren Kontrollen Die aktiv Leistung Grenze von Die Wandler dynamisch. Es Ist wird als Prozentsatz der Registereinstellung "Wirkleistungsbegrenzung" (auf Adresse F30C) eingestellt.

NOTIZ

Das Ist A dynamisch Befehl Das tut nicht erfordern beliebig zurücksetzen. Der Wert Ist nicht gespeichert Und Wann Die Wandler startet neu, Der Befehl muss erneut eingegeben werden.

• **Dynamisch Reaktiv Leistung Grenze**: Das registrieren Kontrollen Die reaktiv Leistung Grenze von Die Wandler dynamisch. Es Ist Satz als der Prozentsatz der Blindleistungsbegrenzungsregistereinstellung (auf Adresse F30E).

NOTIZ

Das Ist A dynamisch Befehl Das tut nicht erfordern beliebig zurücksetzen. Der Wert Ist nicht Gerettet Und Wann Die Wandler startet neu, Der Befehl muss erneut eingegeben werden.

• Dynamisch Cos Phi Ref: Das registrieren Kontrollen Die CosPhi von Die Wandler dynamisch.

NOTIZ

Das Ist A dynamisch Befehl Das tut nicht erfordern beliebig zurücksetzen. Der Wert Ist nicht Gerettet Und Wann Die Wandler startet neu, Der Befehl muss erneut eingegeben werden.

Adresse	Größe	R/W	Name	Тур	WertReichweite	Einheiten
F322	2	R/W	Dynamisch Aktiv Leistung Grenze	Float32	0-100	%
F324	2	R/W	Dynamisch Reaktiv Leistung Ref	Float32	0-100	%
F326	2	R/W	Dynamisch CosPhiRef	Float32	-1 Zu 1	N/A

Erweitert Stromschalter Block Registrieren Karte - ReferenzTisch

Der folgende Tisch fasst zusammen alle Die registriert erwähnt In Die vorherigeAbschnitt.

Adresse	Größ e	R/W	Name	Тур	WertReichweite	Einheiten
F300 102209	1	R/W	Aktivieren Dynamisch Leistung Kontrolle	Uint16	0-1	N/A
F301	1	R	Reserviert	Uint16	-	-
F302	2	R	Reserviert	Float32	-	-
F304	2	R	Max AktivLeistung	Float32	Wandler Bewertung	W
F306	2	R	Max Reaktiv Leistung	Float32	Wandler Bewertung	VAR
F308	1	R/W	Aktiv/Reaktiv Präferenz	Uint16	0-1	0-1
F309	1	R/W	CosPhi/Q Präferenz	Uint16	0-1	0-1
F30A	2	R/W	Reserviert	Float32	-	-
F30C	2	R/W	Aktiv Leistung Grenze	Float32	0- Max Aktiv Leistung	W
F30E	2	R/W	Reaktiv Leistung Grenze	Float32	0- Max Reaktiv Leistung	VAR
F310	2	R/W	Befehl Auszeit	Uint32	0-MAX_UINT32	Sek
F312	2	R/W	Zurückgreifen Aktiv Leistung Grenze	Float32	0-100	%
F314	2	R/W	Zurückgreifen Reaktiv Leistung Grenze	Float32	0-100	%
F316	2	R/W	Zurückgreifen CosPhi	Float32	?	N/A
F318	2	R/W	Aktiv Leistung Aufstocken Rate	Float32	0-100	%/ Mindest
F31A	2	R/W	Aktiv Leistung Runterfahren Rate	Float32	0-100	%/ Mindest
F31C	2	R/W	Reaktiv Leistung AufstockenRate	Float32	0-100	%/ Mindest
F31E	2	R/W	Reaktiv Leistung Runterfahren Rate	Float32	0-100	%/ Mindest
F320	2	R/W	Phi Ändern Rate	Float32	0 -Pi	rad/min
F322	2	R/W	Dynamisch Aktiv Leistung Grenze	Float32	0-100	%
F324	2	R/W	Dynamisch Reaktiv Leistung Ref	Float32	0-100	%
F326	2	R/W	Dynamisch CosPhiRef	Float32	0 -Pi	N/A

Export Grenze Kontrolle Block

Diese Register unterstützen Exportlimit-Kontrolleinstellungen. Zur Exportbegrenzung passt ein SolarEdge-Gerät – ein Wechselrichter oder ein Control and Communication Gateway (CCG) – die PV-Stromproduktion dynamisch an, um sicherzustellen, dass die exportierte Leistung nicht überschritten wird A vorkonfiguriert Grenze. Zu aktivieren Das Funktionalität, ein Energie Meter Das Maßnahmen Export oder Verbrauch muss Sei vor Ort installiert. Ausführliche Erläuterungen zur Exportbeschränkungsfunktion finden Sie hier:

http://www.solaredge.com/files/pdfs/products/feed-in limitation application note.pdf

Der Base registrieren von Die Export Grenze Kontrolle Block Ist Satz Zu 0xE000 Und Auch gespiegelt Zu 0xF000. Um die erweiterte Exportlimitkontrolle zu aktivieren, stellen Sie sicher, dass Folgendes festgelegt ist:

- AdvancedPwrControlEn An Adresse 0xF142 101763 101763 Zu 1 (aktivieren). Es Ist deaktiviert (0) von Standard.
- ReactivePwrConfig An Adresse 0xF104 101701 Zu 4 (RRCR Modus). Es Ist Satz von Standard Zu 0 (Fest CosPhiModus).
- Ausgabe A Begehen Leistung Kontrolle Einstellungen Befehl An Adresse 0xF100 101697 Zu machen Das Einstellung Wirksam
- **Export Kontrolle Modus** An Adresse 0xE000 Ist deaktiviert (=0) von Standard. Das registrieren Kontrollen Die Export Kontrolle Modus vonBetrieb:

Bissc hen #	Name	Beschreibung
0	Direkte	Der Zähler wird am Netzanschlusspunkt angeschlossen und misst die Export-/Importleistung.
	ExportEinsc	Export Grenze Kontrolle Ist durchgeführt direkt von Lektüre Die Export Leistung (Website
	hränkung	Export ≤ Website Grenze).
		Nur einzel Auswahl Ist erlaubt An Bits 0-2.
1	Indirekt ExportEinschrä	Der Meter Ist in Verbindung gebracht An Die Belastung Verbindung Punkt Und Maßnahmen VerbrauchLeistung.
	nkung	Export Grenze Kontrolle Ist durchgeführt indirekt von Lektüre Die Verbrauch Leistung Und Berechnen die Exportleistung (Standortproduktion – Standortverbrauch ≤ Standortlimit).
		Nur einzel Auswahl Ist erlaubt An Bits 0-2.
2	Produktionsbeschr änkung	Für Das Modus entweder Die intern Wechselrichter Leistung Produktion Messungen oder extern Es kann ein Standort-Produktionszähler verwendet werden.
		Der Meter Maßnahmen Die Website Produktion. Der maximal Website Produktion Wille Sei begrenzt Zu Die WebsiteGrenze.
		Nur einzel Auswahl Ist erlaubt An Bits 0-2.
		Beispiel : Website haben A Lizenz für 50 kW Wechselstrom. Der Installateur dürfen Installieren 60 kW Wechselstrom Wechselrichter Und verwenden weniger PV Paneele In Das Website Zu erhalten mehr kWh/Jahr aus Die System von einschränkend Die Website Produktion Zu50 kW.
3-9	Reserviert	Reserviert
10	Externe Produktion	Indikation Das Dort Ist ein zusätzlich nicht von SolarEdge Leistung Quelle (z.B 3 rd Party Wandler) In DieSystem.
		Berechnet Meter Wille Sei gesendet nur Wenn Dort Ist A SolarEdge Meter konfiguriert Zu messen Die Produktion von Stromquellen, die nicht von SolarEdge stammen.
		Bits 10-11 dürfen Sei Satz zusammen mit Bits 0-2.
11		Erlaubt Einstellung von Negativ Website Grenze Zu erlauben Minimum importierenLeistung.
	WebsiteGren	Der System Wille nicht Start Produktion bis Die Minimum importieren
	ze	erforderlich Ist getroffen. Die Bits 10-11 können zusammen mit den Bits 0-2
		gesetzt werden.
12-15	Reserviert	Reserviert

- Beispiel für Direkte Export Einschränkung mit Negativ Website Grenze Einstellung:0000100000000001
- Export Kontrolle Grenze Modus Ist Satz Zu Gesamt von Standard. Dort Sind zwei anwendbar Grenze Modi:
 - O Gesamt: Der Website Grenze Ist Die gesamt Export Leistung An alle Die Phasen kombiniert. Umkehren aktuell An einsPhase

Wille zählen als Negativ Leistung Und dürfen kompensieren für ein anderer Phase.

1 **Pro Phase:**Dieser Modus ist nur für dreiphasige Wechselrichter relevant. Für dreiphasige Netzanschlüsse der Wechselrichter Sätze Die Grenze An jede Phase Zu 1/3 von Die gesamt Website Grenze. Verwenden Das Modus Wenn Dort Ist A Grenze An jede einzelne Phase.

- Export Kontrolle Website Grenze Sätze Die Website Grenze Leistung InWatt.
- Externe ProduktionsmaximalleistungLegt die maximale Leistung in Watt der externen Nicht-SolarEdge-Produktion fest zurückgreifen Berechnung. Es Ist erforderlich für Einstellung Die richtig zurückgreifen Produktion Grenze In SolarEdge Wechselrichter Wann Die Kommunikation
 - zwischen Die Wechselrichter oder mit Die Meter Ist nicht Arbeiten korrekt. Wenn nicht Satz, Standard fallen zurück Ist null (0)Leistung.
- Export Kontrolle Block registrierenKartierung:

Adresse	Grö ße	R/W	Name	Тур	WertReichweite	Einheiten
E000 /F700 103233	1	R/W	Export Kontrolle Modus	Uint16	Bits 0 (LSB) -11	N/A
E001 /F701 103234	1	RW	Export Kontrolle GrenzeModus	Uint16	0-1	N/A
E002 /F702 103235	2	R/W	Export Kontrolle Website Grenze	Float32	0-Max_Site Leistung	W
E012	2	R/W	Extern Produktion Max Leistung	Float32	0-Max_External Quelle Leistung	W

StorEdge-Steuerung Und Status Block

Der StorEdge Block unterstützt vier anders Kontrolle Modi. Der Erste drei (Maximieren Eigenverbrauch, Profil Programmierung (nur Backup) werden vollständig vom Wechselrichter gesteuert und können von einem externen Controller konfiguriert werden. Die 4thDer Steuerungsmodus ist ein Fernsteuerungsmodus, bei dem der StorEdge-Betrieb vollständig über einen externen Controller gesteuert wird.

- Maximieren Selbst Verbrauch In Das Modus, Die Batterie Ist automatisch berechnet Und entlassen treffen Verbrauch Bedürfnisse Und reduzieren Die Menge von Elektrizität gekauft aus Die Netz. Das Der Modus erfordert die Installation eines SolarEdge-Stromzählers, entweder am Netzanschlusspunkt oder am Lastanschlusspunkt.
- Profilprogrammierung(für Arbitrage der Nutzungsdauer) In diesem Modus arbeitet das StorEdgeSystem entsprechend Zu A konfiguriert Aufladung/ Entladung Profil, für Beispiel für Zeit von
 verwenden Arbitrage (Aufladung (Bei niedrigen Tarifen wird die Batterie aus PV/Netz entnommen
 und bei hohen Tarifen entladen.) Dieser Modus erfordert die Installation eines SolarEdgeStromzählers entweder am Netzanschlusspunkt oder am Lastanschlusspunkt. Diese Anwendung wird
 im folgenden Anwendungshinweis
 behandelt:http://www.solaredge.com/files/pdfs/StorEdge_TOU_profile_programming.pdf
- Nur Backup

 Dieser Modus gilt nur für Wechselrichter mit Backup-Funktionalität (dedizierte

 Hardware). In Das Modus, Die Batterie Energie Ist gebraucht nur für Elektrizität Ausfall Und nicht
 gebraucht für auf dem GitterAnwendungen.
- **Fernbedienung Kontrolle** In Das Modus, Die Batterie Laden/Entladen Betrieb Ist völlig kontrolliert verwenden ein externer Controller.

Zu aktivieren StorEdge Kontrolle, machen Sicher Die folgende Ist Satz:

- AdvancedPwrControlEn An Adresse 0xF142 101763 101763 Zu 1 (aktivieren). Es Ist deaktiviert (0) von Standard.
- ReactivePwrConfig An Adresse 0xF104 101701 Zu 4 (RRCR Modus). Es Ist Satz von Standard Zu 0 (Fest CosPhiModus).
- Ausgabe A Begehen Leistung Kontrolle Einstellungen Befehl An Adresse 0xF100 101697 Zu machen Das Einstellung Wirksam.

Das Block besteht von Global StorEdge Kontrolle Block Und pro Batterie Status Und InformationBlöcke

Global StorEdge KontrolleBlock

Der Base registrieren von Die Export Grenze Kontrolle Block Ist Satz Zu 0xE004 Und Auch gespiegelt Zu0xF704 103237.

Lagerung Kontrolle Modus Ist gebraucht Zu Satz Die StorEdge System Betriebs Modus:

- 0 –Deaktiviert
- 1 Maximieren Selbst Verbrauch erfordert A SolarEdge Elektrizität Meter An Die Netz oder Belastung VerbindungPunkt
- 2 Zeit von Verwenden (Profil Programmierung) erfordert A SolarEdge Elektrizität Meter An Die Netz oder Belastung VerbindungPunkt
- 3 Sicherung Nur (anwendbar nur für Systeme Unterstützung SicherungFunktionalität)
- 4 Fernbedienung Kontrolle Die Batterie Laden/Entladen Zustand Ist kontrolliert von ein extern Regler

NOTIZ

Fortschrittlich Leistung Kontrolle solch als Leistung Grenzen oder Farbverläufe laufen In parallel Und haben höherPriorität.

Lagerung Wechselstrom Aufladung Politik Ist gebraucht Zu aktivieren Aufladen für Wechselstrom Und Die Grenze von jährlich Wechselstrom Aufladung (Wenn anwendbar).

- 0 –Deaktivieren
- 1 Stets erlaubt erforderlich für Wechselstrom Kupplung Betrieb. Erlaubt unbegrenzt Aufladen von Die Wechselstrom. Wann gebraucht mit Maximieren Sie den Eigenverbrauch, es wird nur überschüssiger Strom zum Laden verwendet (Laden aus dem Netz ist nicht zulässig).
- 2 Fest Energie Grenze erlaubt Wechselstrom Aufladen mit A Fest jährlich (Jan 1 Zu Dez 31) Grenze (erforderlich für treffen ITC Verordnung in den USA)
- 3 Prozent von Produktion erlaubt Wechselstrom Aufladen mit A % von System Produktion Jahr Zu Datum Grenze (erforderlich für treffen ITC-Regulierung in den USA)

Lagerung Wechselstrom Aufladung Grenze Ist gebraucht Zu Satz Die Wechselstrom Aufladung Grenze nach Zu Die Politik Satz In Die vorherige registrieren. Entweder Fest In kWh oder Prozentsatz eingestellt ist (z. B. 100 kWh oder 70 %). Nur relevant für**Speicher-AC-Gebührenrichtlinie** = 2 oder 3.

Lagerung Sicherung Reserviert Einstellung Sätze Die Prozentsatz von reserviert Batterie SOE Zu Sei gebraucht für Sicherung Zwecke. Relevant nur für Wechselrichter mit Backup-Funktionalität.

Der folgende registriert Sind anwendbar nur für Fernbedienung Kontrolle Modus (0xE004 = 4):

Lagerung Laden/Entladen Standard Modus Sätze Die Standard Modus von Betrieb Wann Fernbedienung Kontrolle Befehl Auszeit hat Abgelaufen. Die unterstützten Lade-/Entlademodi sind wie folgt:

- 0 Aus
- 1 Aufladung Überschuss PV-Strom nur.

Nur PV Überschuss Leistung nicht gehen Zu Wechselstrom Ist gebraucht für Aufladen Die Batterie. Wandler NominalActivePowerLimit (oder des Wechselrichters bewertet Leistung was auch immer Ist untere) Sätze Wie viel Leistung Die Wandler Ist produzieren Zu Die Wechselstrom. In Das Modus, der Batterie kann nicht Sei entlassen. Wenn Die PV Leistung Ist untere als NominalActivePowerLimit Die Wechselstrom Produktion entspricht der PV-Leistung.

2 – Aufladung aus PV Erste, Vor produzieren Leistung Zu Die Wechselstrom.

Der Batterie Aufladung hat höher Priorität als Wechselstrom Produktion. Erste Aufladung Die Batterie Dann produzieren Wechselstrom. Wenn*StorageRemoteCtrl_ChargeLimit*lst geringer als der PV-Überschussstrom, geht er entsprechend in AC über

NominalActivePowerLimit. Wenn NominalActivePowerLimit Ist erreicht Und Batterie StorageRemoteCtrl_ChargeLimit Wird dieser Wert erreicht, wird die PV-Leistung abgeregelt.

3 - Aufladung aus PV+AC nach Zu Die max BatterieLeistung.

Aufladung aus beide PV Und Wechselstrom mit Priorität An PVLeistung.

Wenn PV Produktion Ist untere als StorageRemoteCtrl_ChargeLimit, Die Batterie Wille Sei berechnet aus

Wechselstrom hoch zu NominalActivePowerLimit. In diesem Fall AC-Leistung =

StorageRemoteCtrl ChargeLimit-PVpower.

Wenn PV Leistung Ist größer als StorageRemoteCtrl_ChargeLimit Die Überschuss PV Leistung Wille Sei gerichtet Zu Die Wechselstrom hoch Zu die Nenn-Wirkleistungsgrenze, ab der die PV abgeregelt wird.

4 – Maximieren Export – Entladung Batterie Zu treffen max Wandler Wechselstrom Grenze.

Wechselstrom Leistung Ist gepflegt Zu NominalActivePowerLimit, verwenden PV Leistung und/oder Batterie Leistung. Wenn Die PV Leistung Ist Nicht ausreichend, Batteriestrom wird zur Ergänzung des Wechselstroms bis zu

StorageRemoteCtrl_DishargeLimit verwendet. In diesem Modus wird überschüssiger Strom geladen, wenn mehr PV vorhanden ist als der AC-Grenzwert.

5 – Entladung Zu treffen Ladungen Verbrauch. Entladen Zu Die Netz Ist nicht erlaubt. 7 – Eigenverbrauch maximieren

NOTIZ

Modi 5 Und 7 erfordern ein extern Verbrauch/Export Meter.

Zeitüberschreitung bei Fernbedienungsbefehlenlegt den Betriebszeitrahmen für den Lade-/Entladebefehl fest**Fernbedienungsbefehl**Modus registrieren. Wann Abgelaufen, Es kehrt zurück Zu Die Standard Modus definiert In Lagerung Laden/Entladen Standard Modusregistrieren.

Fernbedienung Kontrolle Befehl Modus Sätze Die Betriebs Modus während Die definiert Zeit rahmen nach Zu Die ausgewählten Speicher-Lade-/Entlademodus (siehe**Standardmodus für Lagerungsladung/-entladung**oben für die verschiedenen Modi) **Ladebegrenzung für die Fernbedienung**legt die maximale Ladegrenze fest. Der Standardwert ist die maximale Akkuladeleistung.

Fernbedienung Kontrolle Aufladung Grenze Sätze Die maximal Entladung Grenze. Der Standard Ist Die maximal Batterie Entladung Leistung.

StorEdge Kontrolle Block registrieren Kartierung:

Adresse	Grö	R/W	Name	Тур	Reichweite	Einheiten
	ße					
E004 (F704 103237)	1	R/W	Lagerung Kontrolle Modus	Uint16	0-4	N/A
E005 (F705103238)	1	R/W	Lagerung Wechselstrom Aufladung Politik	Uint16	0-3	N/A
E006 (F706103239)	2	R/W	Lagerung Wechselstrom AufladungGrenze	Float32	0-Max_Float	kWh oder%
E008 (F708103241)	2	R/W	Lagerung Sicherung Reserviert Einstellung	Float32	0-100	%
E00A (F70A103243)	1	R/W	Lagerung Laden/Entladen Standard Modus	Uint16	0-7	N/A
E00B (F70B103244)	2	R/W	Fernbedienung Kontrolle Befehl Auszeit	Uint32	0-86400(24h)	Sek
E00D (F70D103246)	1	R/W	Fernbedienung Kontrolle Befehl Modus	Uint16	0-7	N/A
E00E (F70E103247)	2	R/W	Fernbedienung Kontrolle Aufladung Grenze	Float32	0- Batterie Max Leistung	W
E010 (F710103249)	2	R/W	Fernbedienung Kontrolle Befehl Entladung Grenze	Float32	0- Batterie Max Leistung	W

Für doppelt Leistung (erfordert anders Hardware), Die Wandler Wille behandeln Die zwei Batterien als A einzel juristische Person.

Konfigurationsbeispiele finden Sie unterAnhang B – Konfigurationsbeispiele.

NOTIZ

Wenn zwei Batterien angeschlossen sind, hängt der Betrieb des Global StorEdge Control Block von der Systemfunktionalität und Hardwareeinschränkungen ab. Werden Doppelbatterien für doppelte Kapazität verwendet, wird jede Batterie nacheinander angesteuert, d.h Erste Batterie 1 Ist entlassen Und Dann Batterie 2, folgende Das Batterie 1 Ist berechnet Und nachher Batterie 2. In Auf diese Weise versucht das System, die Zyklen zwischen den Batterien auszugleichen.

Batterie Status Und Information Block

Das Block unterstützt hoch Zu zweiBatterien.

Der Base registrieren von Die Batterie 1 Status Und Information Ist Satz Zu 0xE100 Und gespiegelt Zu

0xF500 102721. Das Basisregister des Status und der Informationen von Batterie 2 ist auf 0xE200

gesetzt.

Der folgende pro Batterie Typenschild Information Istverfügbar:

- Batterie Hersteller Name
- Batterie Modell
- Batterie FirmwareAusführung
- Batterie SeriellNummer
- Batterie Gerät AUSWEIS (MODBUSAdresse)
- Batterie Bewertet Energie
- Batterie Max Aufladung Geht weiter Leistung
- Batterie Max Entladung Geht weiter Leistung
- Batterie Max Aufladung Gipfel Leistung
- Batterie Max Entladung GipfelLeistung

Der folgende pro Batterie Status Sind verfügbar (Wenn unterstützt von Die Batterie Verkäufer):

- Batterie DurchschnittTemperatur
- Batterie MaxTemperatur
- Batterie Sofort Stromspannung
- Batterie Sofort Aktuell
- Batterie Sofort Leistung
- Batterie Lebensdauer Export Energie Schalter
- Batterie Lebensdauer Importieren Energie Schalter
- Batterie Max Energie Aktualisiert nach Zu Die Batterie Altern
- Batterie Verfügbar Energie (Sofort)
- Batterie Zustand von Gesundheit (SOH) berechnet als Batterie Max Energie \ Batterie BewertetEnergie
- Batterie Zustand von Energie (SOE) berechnet als Batterie Verfügbar Energie \ Batterie MaxEnergie
- Batterie Status Batterie Betriebs Zustand: 0 Aus; 1 Stehen zu; 2 Drin; 3 Aufladung; 4 Entladung; 5 Fehler; 7 Leerlauf
- Status Intern intern Batterie Verkäufer Status
- Veranstaltungen Protokoll Ereignisprotokoll[0] hat Die zuletzt Fehler; EventsLog[1..7] Sind nicht umgesetzt
- Veranstaltungen Protokoll Intern –reserviert

StorEdge Batterie 1 Status Und Information Block registrieren Kartierung:

Adresse	Grö ße	R/W	Name	Тур	Einheiten
E100 (F500 102721)	16	R	Batterie 1 Hersteller Name	Zeichenfolge [32]	-
E110 (F510 102737)	16	R	Batterie 1 Modell	Zeichenfolge [32]	-
E120 (F520 102753)	16	R	Batterie 1 Firmware Ausführung	Zeichenfolge [32]	-
E130 (F530 102769)	16	R	Batterie 1 SeriellNummer	Zeichenfolge [32]	-
E140 (F540)	1	R	Batterie 1 Gerät AUSWEIS	Uint16	-
E141 (F541)	1	R	Reserviert	Uint16	-
E142 (F542 102787)	2	R	Batterie 1 BewertetEnergie	Float32	B*H
E144 (F544 102789)	2	R	Batterie 1 Max Aufladung Geht weiter Leistung	Float32	W
E146 (F546 102791)	2	R	Batterie 1 Max Entladung Geht weiter Leistung	Float32	W
E148 (F548)	2	R	Batterie 1 Max Aufladung Gipfel Leistung	Float32	W
E14A (F54A)	2	R	Batterie 1 Max Entladung Gipfel Leistung	Float32	W
E14C (F54C)	32	R	Reserviert	Uint16	-
E16C (F56C 102829)	2	R	Batterie 1 DurchschnittTemperatur	Float32	°C
E16E (F56E)	2	R	Batterie 1 Max Temperatur	Float32	°C
E170 (F570)	2	R	Batterie 1 Sofort Stromspannung	Float32	V
E172 (F572)	2	R	Batterie 1 Sofort Aktuell	Float32	A
E174 (F574 102837)	2	R	Batterie 1 Sofort Leistung	Float32	W
E176 (F576 102839)		R	Batterie 1 Lebensdauer Export Energie Schalter	Uint64	B*H
E17A (F57A 102843)		R	Batterie 1 Lebensdauer Importieren Energie Schalter	Uint64	B*H
E17E (F57E 102847)		R	Batterie 1 Max Energie	Float32	B*H
E180 (F580 102849)	2	R	Batterie 1 Verfügbar Energie	Float32	B*H
E182 (F582 102851)	2	R	Batterie 1 Zustand von Gesundheit (SOH)	Float32	N/A
E184 (F584 102853)	2	R	Batterie 1 Zustand von Energie(SOE)	Float32	N/A
E186 (F586102855)	2	R	Batterie 1 Status	Uint32	0-7
E188 (F588102857)	2	R	Batterie 1 StatusIntern	Uint32	Vom Anbieter definiert Status Codes.
E18A (F58A102859)	8	R	Batterie 1 Veranstaltungen Protokoll	Uint16[8]	Batterie Verkäufer zuletzt Fehler AUSWEIS
- (,	8	R	Batterie 1 Veranstaltungen ProtokollIntern	Uint16[8]	-
E19A (F59A)	32	R	Reserviert	Uint16	N/A

StorEdge Batterie 2 Status Und Information Block registrieren Kartierung:

Adresse	Größ e	R/W	Name	Тур	Einheiten
E200	16	R	Batterie 2 Hersteller Name	Zeichenfolge [32]	-
E210	16	R	Batterie 2 Modell	Zeichenfolge [32]	-
E220	16	R	Batterie 2 FirmwareAusführung	Zeichenfolge [32]	-
E230	16	R	Batterie 2 SeriellNummer	Zeichenfolge [32]	-
E240	1	R	Batterie 2 Gerät AUSWEIS	Uint16	-
E241	1	R	Reserviert	Uint16	-
E242	2	R	Batterie 2 BewertetEnergie	Float32	B*H
E244	2	R	Batterie 2 Max Aufladung Geht weiterLeistung	Float32	W
E246	2	R	Batterie 2 Max Entladung Geht weiter Leistung	Float32	W
E248	2	R	Batterie 2 Max Aufladung Gipfel Leistung	Float32	W
E24A	2	R	Batterie 2 Max Entladung Gipfel Leistung	Float32	W
E24C	32	R	Reserviert	Uint16	-
E26C	2	R	Batterie 2 DurchschnittTemperatur	Float32	°C
E26E	2	R	Batterie 2 Max Temperatur	Float32	°C
E270	2	R	Batterie 2 Sofort Stromspannung	Float32	V
E272	2	R	Batterie 2 Sofort Aktuell	Float32	A
E274	2	R	Batterie 2 Sofort Leistung	Float32	W
E276	4	R	Batterie 2 Lebensdauer Export Energie Schalter	Uint64	B*H
E27A	4	R	Batterie 2 Lebensdauer Importieren Energie Schalter	Uint64	B*H
E27E	2	R	Batterie 2 Max Energie	Float32	B*H
E280	2	R	Batterie 2 Verfügbar Energie	Float32	B*H
E282	2	R	Batterie 2 Zustand von Gesundheit (SOH)	Float32	N/A
E284	2	R	Batterie 2 Zustand von Energie(SOE)	Float32	N/A
E286	2	R	Batterie 2 Status	Uint32	0-7
E288	2	R	Batterie 2 StatusIntern	Uint32	Vom Anbieter definiert Status Codes
E28A	8	R	Batterie 2 Veranstaltungen Protokoll	Uint16[8]	Batterie Verkäufer zuletzt Fehler AUSWEIS
E292	8	R	Batterie 2 Veranstaltungen ProtokollIntern	Uint16[8]	-
E29A	32	R	Reserviert	Uint16	N/A

Registrieren Zuordnung – Raster SchutzGrenzen

Global Netz Schutz Block - Begehen und Wiederherstellen

Der Base registrieren von Die Netz Schutz Block Ist Satz Zu 0xF600 Und beinhaltet zwei global Kontrolle registriert:

- Übernehmen Sie die Einstellungen für Rastergrenzen: Dieses Register führt das eigentliche Schreiben der Registerzuordnung der Netzschutz-Auslösegrenzen durch (Adressen 0xF602 Und weiter). Das bedeutet Das alle Die relevant Netz Schutz Reiselimit Einstellungen brauchen Zu Sei Aktualisiert Vor ausführen Das Befehl.
 - Schreiben Wert: 1 Ausführenbegehen.
 - Befehl Ausführung Zeit: 5-10 Sekunden.
 - Lesen Werte:
 - o 0 Begehen hingerichtet erfolgreich
 - o 0x1 Intern Fehler
 - 0xFFFF Unbekannt Fehler
- Wiederherstellen Netz Grenzen Standard Einstellungen: Das registrieren stellt wieder her Die Netz Schutz Reiselimit Einstellungen Zu Die Standard Werte von die Ländereinstellungen. Dieses Register ändert die Kreiseinstellung nicht.
 - Schreiben Wert: 1 Ausführen wiederherstellen Standardwerte.
 - Befehl Ausführung Zeit: 3-6Sekunden.
 - Lesen Werte:
- 0 Wiederherstellen Standardwerte hingerichteterfolgreich
- o 0xFFFF Fehler

Adresse	Größ e	R/W	Name	Тур	Reichwei te	Einheiten
F600	1	R/W	Begehen Netz Grenzen Einstellungen	Int16	N/A	N/A
F601	1	R/W	Wiederherstellen Netz Grenzen Einstellungen Standardeinstellungen	Int16	N/A	N/A

Netz Schutz Reise GrenzenBlock

Das Block Sätze Die Netz Schutz ReiseGrenzen.

Der Benutzer dürfen Satz Die folgende Netz Schutz Grenzen:

Vg<min, max> <1-5>: Der Minimum Und maximal Netz Stromspannung Schwellenwerte (Volt).

Vg<min, max><1-5>_HoldTime: Der Minimum Und maximal Netz Stromspannung Schwellenwerte Reise Zeit In Millisekunden. Der Reise Die Zeit gibt die Zeit an, nach der sich der Wechselrichter vom Netz trennen soll, wenn die Netzspannung außerhalb des zulässigen Bereichs liegt.

Fg<min, max> <1-5>: Der Minimum Und maximal Netz Frequenz Schwellenwerte(Hz).

Fg<min, max> <1-5>_HoldTime: Der Minimum Und maximal Netz Frequenz Schwellenwerte Reise Zeit In Millisekunden. Der Reise Die Zeit gibt die Zeit an, nach der sich der Wechselrichter vom Netz trennen soll, wenn die Netzspannung außerhalb des zulässigen Bereichs liegt.

GRM Zeit: Netz Überwachung Zeit - Die Dauer (Millisekunden) Das Die Netz Stromspannung Und Frequenz haben Zu Sei innerhalb Die Reichweite (Min.- und Max.-Grenzwerte), bevor sich der Wechselrichter wieder mit dem Netz verbinden kann. Wenn die GRM-Zeit beispielsweise auf 60 Sekunden eingestellt ist, prüft der Wechselrichter 60 Sekunden lang, ob das Netz innerhalb der Spannungs- und Frequenzbereiche liegt, bevor er sich wieder mit dem Netz verbindet.

Netz Schutz Reise Limits-Block – RegistrierenKarte

Der folgende Tisch fasst zusammen alle Die Netz Schutz Reise Grenzenregistriert:

Adresse	Größe	R/W	Name	Тур	Reichweite	Einheiten
F602	2	R/W	VgMax1	Float32	0-MAX_FLOAT	V
604	2	R/W	VgMax1_HoldTime	Uint32	0-MAX_UINT32	ms
F606	2	R/W	VgMax2	Float32	0-MAX_FLOAT	V
608	2	R/W	VgMax2_HoldTime	Uint32	0-MAX_UINT32	ms
F60A	2	R/W	VgMax3	Float32	0-MAX_FLOAT	V
60C	2	R/W	VgMax3_HoldTime	Uint32	0-MAX_UINT32	ms
F60E	2	R/W	VgMax4	Float32	0-MAX_FLOAT	V
610	2	R/W	VgMax4_HoldTime	Uint32	0-MAX_UINT32	ms
F612	2	R/W	VgMax5	Float32	0-MAX_FLOAT	V
614	2	R/W	VgMax5_HoldTime	Uint32	0-MAX_UINT32	ms
F616	2	R/W	VgMin1	Float32	0-MAX_FLOAT	V
618	2	R/W	VgMin1_HoldTime	Uint32	0-MAX_UINT32	ms
F61A	2	R/W	VgMin2	Float32	0-MAX_FLOAT	V
61C	2	R/W	VgMin2_HoldTime	Uint32	0-MAX_UINT32	ms
61E	2	R/W	VgMin3	Float32	0-MAX_FLOAT	V
620	2	R/W	VgMin3_HoldTime	Uint32	0-MAX_UINT32	ms
622	2	R/W	VgMin4	Float32	0-MAX_FLOAT	V
624	2	R/W	VgMin4_HoldTime	Uint32	0-MAX_UINT32	ms
626	2	R/W	VgMin5	Float32	0-MAX_FLOAT	V
F628	2	R/W	VgMin5_HoldTime	Uint32	0-MAX_UINT32	ms
62A	2	R/W	FgMax1	Float32	0-MAX_FLOAT	Hz
62C	2	R/W	FgMax1_HoldTime	Uint32	0-MAX_UINT32	ms
62E	2	R/W	FgMax2	Float32	0-MAX_FLOAT	Hz
630	2	R/W	FgMax2_HoldTime	Uint32	0-MAX_UINT32	ms
632	2	R/W	FgMax3	Float32	0-MAX_FLOAT	Hz
F634	2	R/W	FgMax3_HoldTime	Uint32	0-MAX_UINT32	ms
636	2	R/W	FgMax4	Float32	0-MAX_FLOAT	Hz
F638	2	R/W	FgMax4_HoldTime	Uint32	0-MAX_UINT32	ms
63A	2	R/W	FgMax5	Float32	0-MAX_FLOAT	Hz
F63C	2	R/W	FgMax5_HoldTime	Uint32	0-MAX_UINT32	ms
63E	2	R/W	FgMin1	Float32	0-MAX_FLOAT	Hz
F640	2	R/W	FgMin1_HoldTime	Uint32	0-MAX_UINT32	ms
642	2	R/W	FgMin2	Float32	0-MAX_FLOAT	Hz
F644	2	R/W	FgMin2_HoldTime	Uint32	0-MAX_UINT32	ms
646	2	R/W	FgMin3	Float32	0-MAX_FLOAT	Hz
F648	2	R/W	FgMin3_HoldTime	Uint32	0-MAX_UINT32	ms
64A	2	R/W	FgMin4	Float32	0-MAX_FLOAT	Hz
F64C	2	R/W	FgMin4_HoldTime	Uint32	0-MAX_UINT32	ms
F64E	2	R/W	FgMin5	Float32	0-MAX_FLOAT	Hz
F650	2	R/W	FgMin5_HoldTime	Uint32	0-MAX_UINT32	ms
652	2	R/W	GRM Time	Uint32	0-MAX_UINT32	ms

Anhang A - Q Aufbau

Wenn Die Dienstprogramm erfordert A Q(U) Kontrolle von Die Wandler, Es normalerweise bietet A linear Graph, mit Umin, Umax, Q(Umin) Und Q(Umax). Wenn das Versorgungsunternehmen eine Q(U)+Q(P)-Steuerung des Wechselrichters erfordert, stellt es normalerweise einen linearen Q(U)-Graph für P=0 und für P=Pnom bereit.

Zu übersetzen Das Graph Zu Die Werte Das brauchen Zu Sei konfiguriert In Die Wandler, verwenden Die folgende Definitionen Und Anweisungen; Q Und

U (deutlich Schriftart) verweisen Zu Die Werte Das sollen Sei Satz In DieWandler:

1
$$Q_{max} = 0.6 * S_{max}$$

$$Q_{max} = sin\varphi *S_{max} = Sünde(cos_S^{-1}^F)_{max}$$
; optimal CosPhi Ist Satz Zu A Minimal Maximal Wert von -0,8/0,8 Sünde(cos_1^0.8) =

Sünde(
$$\cos^{-1} 0.8$$
) =
$$U_{min} = \frac{U_{min}}{U_{nom}} / U_{nom} ; U_{max} = \frac{U_{max}}{U_{nom}}$$
(zwischen 0 Und 200)

NOTIZ:

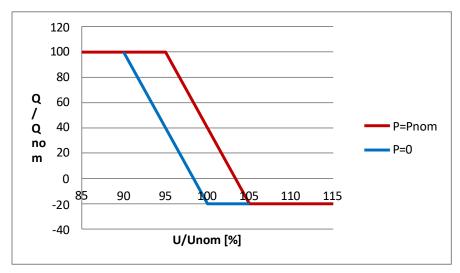
SolarEdge-Wechselrichter nutzen die Konvention, dass induktive Leistung positiv und kapazitive Leistung negativ ist; Da die meisten Diagramme mit der umgekehrten Konvention geliefert werden, dh dass Q mit zunehmendem U abnimmt, wurde das Minuszeichen eingefügt hinein Die über Definitionen. Wann geliefert mit A Graph Wo Q erhöht sich als U erhöht sich, Die Minus Zeichen sollte ignoriert werden.

Der 6 Punkte Das Satz Die linear Q(U) Grafik sollte Sei Die Folgendes:

P0	U Mindest	Q(UMindest)
P1	U Mindest	Q(UMindest)
P2	U Mindest	Q(UMindest)
P3	U max	Q(Umax)
P4	U max	Q(Umax)
P5	U max	Q(Umax)

Nicht eingeben identisch $Q(U_{min})$ oder $Q(U_{max})$ Werte für anders U Punkte.

Wenn Die Graph umfaßt mehrere linear Abschnitte, verwenden Punkte 1-4 für Die Q(U) Werte von Die brechen Punkte


- $dQ = -[Q(U, P = P_{nom}) Q(U, P = 0)]$ (Sehen über Hinweis bzgl das MinusZeichen.)
- Der 6 Punkte Das Satz Die Q(P) Graph sollen Sei Die Folgendes:

P0	0	0
P1	0	0
P2	0	0
P3	100	dQ/Qmax
P4	100	dQ/Qmax
P5	100	dQ/Qmax

<u>Beispiel</u>

Der folgende Q(U,P) Graph hat gewesen bereitgestellt von Die Dienstprogramm:

Der Wandler Sein konfiguriert Ist SE10k, welche hat A maximal Wechselstrom Leistung von 10kVA. Der folgende Werte Sind Die Ergebnis von Die überSchritte:

1
$$Q_{max} = 0.6 * 10 = 6kVAR$$

2
$$U_{min} = 90 \%$$
; $U_{max} = 100\%$

[Wenn U Ist bereitgestellt In Volt, teilen von Unom Zu erhalten Die Prozentsatz Wert]

3
$$Q(U_{min}) = -100 \%$$
; $Q(U_{max}) = 20 \%$

C. [Wenn Q Ist bereitgestellt In kVAR, teilen von Qnom Zu erhalten Die Prozentsatz Wert]

4 Der 6 Punkte Das Satz Die Q(U) Graph sollen Sei Die Folgendes:

P0	90	-100
P1	90	-100
P2	90	-100
P3	100	20
P4	100	20
P5	100	20

5
$$dQ = -[40 - (-20)] = -60\%$$

6 In Das Fall, dQ Ist bereits normalisiert von Qmax. Daher, Die 6 Punkte Das Satz Die Q(P) Graph sollen Sei Die Folgendes:

P0	0	0
P1	0	0
P2	0	0
P3	100	-60
P4	100	-60
P5	100	-60

Anhang B - AufbauBeispiele

Aktivieren Dynamisch Leistung KontrolleModus

- Satz AdvancedPwrControlEn (0xF142 101763 101763) Zu 1 (aktivieren). Es Ist deaktiviert (0) von Standard.
- Satz ReactivePwrConfig (0xF104 101701) Zu 4 (RRCR Modus). Es Ist Satz von Standard Zu 0 (Fest CosPhi Modus).
- Ausgabe A CommitPowerControlSettings Befehl An Adresse 0xF100 101697 In Befehl Zu machen Das Einstellung Wirksam. Das Der Befehl wird in 5 bis 10 Sekunden ausgeführt.

Verwenden Die folgende registriert für dynamisch Befehle:

- Der Wandler maximal aktiv Leistung dürfen Sei kontrolliert dynamisch mit NominalActivePowerLimit (0xF001).
- Der Wandler reaktiv Leistung dürfen Sei kontrolliert mit CosPhi (0xF002).

NOTIZ:

Das Ist Wirksam nur für exportieren Leistung Zu Die Wechselstrom. Wann importieren Leistung aus Die Wechselstrom, Die Wandler Leistung Ist definiert von Die Batterieleistungsgrenze und PV-Produktion (innerhalb der für den Wechselrichter festgelegten statischen

Aufbau von Die Lagerung Kontrolle für Remote KontrolleModus

Anfänglich Aufbau

- Satz *ExportConf_Ctrl* (0xE000) Zu 0 Zu deaktivieren Export Aufbau //Das Ist gebraucht nur Wann Die Wandler verwaltet Die Stromschalter. Dies gilt nicht für den Fernbedienungsmodus und muss daher deaktiviert werden
- Satz StorageConf_CtrlMode (0xE004) Zu 4 "Fernbedienung"
- Satz StorageConf AcChargePolicy (0xE005) Zu 1 "Stets Erlaubt" // Anwendbar Wenn Wechselstrom Aufladung Ist erforderlich.
- StorageConf_AcChargeLimit (0xE006) //Das Ist relevant nur Wenn StorageConf_AcChargePolicy (0xF705) Ist Satz Zu 2 oder 3
- StorageConf_BackupReserved (0xE008) // nur anwendbar Zu Wechselrichter Das Unterstützung Sicherung Hardware Funktionalität
- Satz StorageConf_DefaultMode (0xE00A) empfehlen Zu Satz Zu 1 "Aufladung Überschuss PV" //Standard zurückgreifen Modus In Fall einer Kommunikationsunterbrechung.

Verwenden Die folgende registriert für dynamisch Befehle:

- StorageRemoteCtrl_CommandTimeout (0xE00B): Sets Die Zeit Dauer In Sekunden für Die neu Befehl (z.B dürfen wird bei jedem Schreibzyklus um einige Sekunden erneuert).
- StorageRemoteCtrl_CommandMode (0xE00D): Setw Die Betriebs Modus während Die definiert Zeit rahmen nach zum ausgewählten Speicher-Lade-/Entlademodus
- StorageRemoteCtrl ChargeLimit (0xE00E): Batterie Aufladung Leistung Grenze In Watt hoch Zu Die Batterie max Leistung
- StorageRemoteCtrl DischargeLimit (0xE010): Batterie Entladung Leistung Grenze In Watt hoch Zu Die Batterie max Leistung

Konfigurationen Beispiele für dynamisch Befehle:

Entladung 1500W für 15 Protokoll:

- StorageRemoteCtrl_CommandTimeout = 900 // Sekunden. Wandler kehrt zurück Zu Die Standardwerte Satz in der Erstkonfiguration nach dem Timeout.
- StorageRemoteCtrl_CommandMode = 4 // 'Entladung' Modus
- StorageRemoteCtrl_DischargeLimit = 1500 // W

Aufladung 2000W von dem Wechselstrom für 15Protokoll:

- StorageRemoteCtrl_CommandTimeout =900 // Sekunden
- StorageRemoteCtrl_CommandMode = 3 // 'Aufladung voll aus AC+PV' Modus
- StorageRemoteCtrl_ChargeLimit = 2000 // W