NEWS
Test Adapter AI Toolbox v0.0.7 GitHub/Latest
-
In Version 0.0.7 gibt es nun auch die Möglichkeit lokale Pfade zu Bildern anzugeben (siehe Readme auf Github). Dies ermöglicht es z.B. direkt Bildanfragen vom Telegram Adapter von KI Tools verarbeiten bzw analysieren zu lassen.
@oxident Ich habe da noch einen zweiten Adapter in Entwicklung welcher eher in die Richtung geht als vollumfänglicher Assistent in ioBroker zu funktionieren. Den werde ich die Tage auch mal auf Github stellen zum testen.
-
@toge88 sagte in Test Adapter AI Toolbox v0.0.7 GitHub/Latest:
In Version 0.0.7 gibt es nun auch die Möglichkeit lokale Pfade zu Bildern anzugeben (siehe Readme auf Github). Dies ermöglicht es z.B. direkt Bildanfragen vom Telegram Adapter von KI Tools verarbeiten bzw analysieren zu lassen.
Klappt auch wunderbar um snapshots von der Überwachungskamera auszuwerten. Liegt ein Paket vor der Tür, steht ein Auto in der Einfahrt etc. Man kann den Bot ja so definieren, dass er bei Bedarf ein true oder false ausgibt.
-
@toge88 Sehr genial. Dann startet das neue Jahr definitiv spannend!
-
Ich habe mal eine kleine Offtopic Frage.
Evtl hast du da ja schon mal was zu gelesen.Weißt du, warum die Ergebnisse der Api zur Bildanalyse VIEL schlechter sind als über die Website bzw App direkt? Mit den Tokens die man einstellt hat es nichts zu tun.
Ich habe gelesen, dass bei der Api die Auflösung vom Bild angepasst wird vor der Analyse. Aber das macht der "normale" weg ja vermutlich auch.... -
@david-g Ich habe noch nicht wirklich viel mit der Bilderkennung ausprobiert daher fehlen mir da ein wenig die Vergleichswerte. Ist das Verhalten denn bei allen Modellen gleich?
Der Adapter wandelt das Bild lediglich in einen Base64 String um und übergibt es an die jeweiligen Anbieter Schnittstelle, wenn es da eine Reduzierung der Auflösung gibt müsste das auf Anbieterseite passieren.
Ein Ansatz wäre vielleicht dem Modell einen gewissen "Freiraum" zum denken zu geben bei seiner Antwort. Damit konnte ich für Textausgaben zumindest die Qualität deutlich steigern. Ich löse dass so das ich das Werkzeug im Adapter Json ausgeben lasse und als erstes Attribut "reasoning" festlege. In diesen soll das Modell dann seinen Prozess schreiben wie es zu seinem Ergebnis gekommen ist. Bei der weiteren Verarbeitung verwerfe ich diesen Inhalt dann einfach und nutze nur die für mich relevanten Daten weiter.
Könnte sein dass es bei der Bildverarbeitung auch klappt.
-
@toge88
Habe hier glaube was gefunden.
https://www.ai-for-devs.com/blog/gpt-vision-learn-how-to-use-gpt-4-to-understand-imagesUnter "Improving Image Fidelity: Low and High Resolution Image Understanding" steht ein wenig.
Das Modell entscheidet scheinbar selber, wenn man keine Qualität der Verarbeitung angibt.
Vermutlich ist er bei der Api was konservativer.Wenn ich in meine frage mit schreibe, dass das Bild in einer hohen Qualität verarbeiten soll ist das Ergebnis schon besser.
ML sehen, ob man das in den Einstellungen vom bot mitgegeben bekommt. -
Habe gerade mal einen Test versucht mit Perplexity/LLama huge und dem simple-chatbot Tool. Die Eingabe der Anfrage über ai-toolbox.0.Tools.simple-chatbot.text_request funktioniert zwar, aber über ai-toolbox.0.Tools.simple-chatbot.text_response kommt nichts zurück. Im Datenpunkt ai-toolbox.0.Tools.simple-chatbot.response.raw steht dennoch eine passende JSON Antwort und auch im Debug Log ist die Antwort enthalten. Die Anfrage über request/response beim Datenmodell selbst funktioniert dagegen anscheinend wie beabsichtigt.
Mache ich da noch etwas falsch oder sollte man hier die raw Response einfach selbst zerlegen?
-
@mick70 Das könnte ein Bug sein, da ich selber keinen Perplexity API Zugang habe wäre es super wenn du mal das Debug Log einer Anfrage schicken könntest!
Edit: Der Inhalt von raw response wäre auch hilfreich
-
@david-g Das klingt tatsächlich so als ob man das am besten über den Prompt bzw die Anfrage lösen sollte. Es gibt ja laut deinem Link den Parameter in der API um die höhere Qualität zu erzwingen, ich glaube es wäre aber nicht zielführend das für jede Anfrage an OpenAI zu setzen. Kannst du das Verhalten über den Prompt denn konsistent steuern?
-
ein wahrlich interessantes projekt - leider fehlt mir die weitsicht, wenn es um anwendungen geht - daher die hoffnung, ihr werdet projekte oder tests in einem evlt. eignenen thread vorstellen
-
@toge88 Super Projekt. Herzlichen Dank. Nutze es für eine Wettervorhersage für den Tag 2x pro Tag via Pushover bekommen wir jetzt eine Wettervorhersage auf das Smartphone.
Funktioniert top. Bin schon am überlegen welche anderen Daten und Möglichkeiten ich nutzen werde. Sobald ich noch neue Use Cases am Laufen habe, melde ich mich.
Weiter so - echt genial